检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
使用SSH工具连接Notebook,服务器的进程被清理了,GPU使用率显示还是100% 原因是代码运行卡死导致被进程清理,GPU显存没有释放;或者代码运行过程中内存溢出导致程序被清理,需要释放下显存,清理GPU,然后重新启动。为了避免进程结束引起的代码未保存,建议您每隔一段时间保存下代码输出至OBS桶或者容器
训练作业进程异常退出 问题现象 训练作业运行失败,日志中出现如下类似报错: [Modelarts Service Log]Training end with return code: 137 原因分析 日志显示训练进程的退出码为137。训练进程表示用户的代码启动后的进程,所以这里
内存不足如何处理? 问题现象 在部署或升级在线服务时,如果部署或升级失败,并且在事件中出现如下类似提示。 图1 内存不足提示样例1 运行中服务出现告警时,在事件中出现建议:内存不足,请增加内存。 图2 内存不足提示样例2 原因分析 部署或升级时出现该提示,可能原因是选择的计算节点
训练作业进程被kill 问题现象 用户进程被Kill表示用户进程因外部因素被Kill或者中断,表现为日志中断。 原因分析 CPU软锁 在解压大量文件可能会出现此情况并造成节点重启。可以适当在解压大量文件时,加入sleep。比如每解压1w个文件,就停止1s。 存储限制 根据规格情况
若想停止训练任务,可执行下述命令关闭进程,查询进程后显示已无运行中python进程。 pkill -9 python ps -ef 图8 关闭训练进程 limit/request配置cpu和内存大小,已知单节点Snt9B机器为:8张Snt9B卡+192u1536g,请合理规划,避免cpu和内存限制过小引起任务无法正常运行。
在Notebook中,如何使用昇腾多卡进行调试? 昇腾多卡训练任务是多进程多卡模式,跑几卡需要起几个python进程。昇腾底层会读取环境变量:RANK_TABLE_FILE,开发环境已经设置,用户无需关注。比如跑八卡,可以如下片段代码: export RANK_SIZE=8
用户结束kernelgateway进程后报错Server Connection Error,如何恢复? 问题现象 当kernelgateway进程被结束后,出现如下报错,以及选不到Kernel。 图1 报错Server Connection Error截图 图2 选不到Kernel
INFO:root:Using OBS-Python-SDK-3.1.2 原因分析 Pytorch通过spawn模式创建了多个进程,每个进程会调用多进程方式使用Mox下载数据。此时子进程会不断销毁重建,Mox也就会不断的被导入,导致打印很多Mox的版本信息。 处理方法 为避免训练作业Pytorch
max_split_size_mb to avoid fragmentation. 解决方法: 通过npu-smi info查看是否有进程资源占用NPU,导致训练时显存不足。解决可通过kill掉残留的进程或等待资源释放。 可调整参数:TP张量并行(tensor-model-parallel-size) 和PP
max_split_size_mb to avoid fragmentation. 解决方法: 通过npu-smi info查看是否有进程资源占用NPU,导致训练时显存不足。解决可通过kill掉残留的进程或等待资源释放。 可调整参数:TP张量并行(tensor-model-parallel-size) 和PP
max_split_size_mb to avoid fragmentation. 解决方法: 通过npu-smi info查看是否有进程资源占用NPU,导致训练时显存不足。解决可通过kill掉残留的进程或等待资源释放。 可调整参数:TP张量并行(tensor-model-parallel-size) 和PP
max_split_size_mb to avoid fragmentation. 解决方法: 通过npu-smi info查看是否有进程资源占用NPU,导致训练时显存不足。解决可通过kill掉残留的进程或等待资源释放。 可调整参数:TP张量并行(tensor-model-parallel-size) 和PP
6就是超分比率。即启动该Notebook实例最少需要1.2U的CPU,运行Notebook时最大使用到2U的资源;内存同理,最少需要4.8G的内存,运行时最大使用到8U的内存。 超分情况下会存在实例终止的风险。如1个8U的节点上同时启动了6个2U的实例,如果其中一个实例CPU使用增大
问题1:在训练过程中遇到NPU out of memory 解决方法: 容器内执行以下命令,指定NPU内存分配策略的环境变量,开启动态内存分配,即在需要时动态分配内存,可以提高内存利用率,减少OOM错误的发生。 export PYTORCH_NPU_ALLOC_CONF = exp
卡死检测主要是通过监控作业进程的状态和资源利用率来判定作业是否卡死。会启动一个进程来周期性地监控上述两个指标的变化情况。 进程状态:只要训练作业中存在进程IO有变化,进入下一个检测周期。如果在多个检测周期内,作业所有进程IO都没有变化,则进入资源利用率检测阶段。 资源利用率:在作业进程IO没有变
根据现象描述可能出现了nvidia-smi D+进程。 "D+"表示进程状态为"Uninterruptible Sleep (usually IO)",即进程正在等待I/O操作完成,此时无法被中断。 在正常情况下,nvidia-smi进程通常只会短暂地出现D+状态,因为它们是由内核控制的,该进程处于等待I/O操
问题1:在训练过程中遇到NPU out of memory 解决方法: 容器内执行以下命令,指定NPU内存分配策略的环境变量,开启动态内存分配,即在需要时动态分配内存,可以提高内存利用率,减少OOM错误的发生。 export PYTORCH_NPU_ALLOC_CONF = exp
问题1:在训练过程中遇到NPU out of memory 解决方法: 容器内执行以下命令,指定NPU内存分配策略的环境变量,开启动态内存分配,即在需要时动态分配内存,可以提高内存利用率,减少OOM错误的发生。 export PYTORCH_NPU_ALLOC_CONF = exp
问题1:在训练过程中遇到NPU out of memory 解决方法: 容器内执行以下命令,指定NPU内存分配策略的环境变量,开启动态内存分配,即在需要时动态分配内存,可以提高内存利用率,减少OOM错误的发生。 export PYTORCH_NPU_ALLOC_CONF = exp
communication - small packet 通信维度,识别因batch过小或者梯度累积较少导致的未充分利用机内通信带宽。 communication - bandwidth contention 通信维度,识别计算和通信相互掩盖,可能会抢占通信带宽。 communication - retransmission