检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
如何判断训练状态是否正常 判断训练状态是否正常,通常可以通过观察训练过程中Loss(损失函数值)的变化趋势。损失函数是一种衡量模型预测结果和真实结果之间的差距的指标,正常情况下越小越好。 您可以从平台的训练日志中获取到每一步的Loss,并绘制成Loss曲线,来观察其变化趋势。一般
模型回答生成的长度,避免生成异常截断。请注意,该参数值存在上限,请结合目标任务的实际需要以及模型支持的长度限制来调整。 模型规格:不同规格的模型支持的长度不同,若目标任务本身需要生成的长度已经超过模型上限,建议您替换可支持更长长度的模型。 数据质量:请检查训练数据中是否存在包含异常截断的数据,可以通过规则进行清洗。
发布数据集 刚创建的数据集在未发布状态下,无法应用于模型训练,数据集创建、清洗完成后需要执行“发布”操作才可以将该数据集用于后续的任务中。 登录盘古大模型套件平台。 在左侧导航栏中选择“数据工程 > 数据管理”,在“我的数据集”页签找到未发布的数据集,单击操作列“版本发布”执行发布数据集操作。
合规度颜色 是否可用于训练 >=80% 绿色 可用 >=40% 黄色 预警,需要优化数据 <40% 红色 告警,需要优化数据 (可选)当“我的数据集”的OBS数据发生变更时,可以单击右上角“检测”按钮重新校验数据集,也可以在“我的数据集”页签中,单击操作栏中的“更多 > 检测”,重
评估和优化模型 模型评估: 您可以从平台的训练日志中获取到每一步的Loss,并绘制成Loss曲线。本场景的一个Loss曲线示例如下: 图1 Loss曲线 通过观察,Loss曲线随着迭代步数的增加呈下降趋势直至稳定,证明整个训练状态是正常的。 模型持续优化: 本场景采用了下表中的推理参
训练智能客服系统大模型需要考虑哪些方面 根据智能客服场景,建议从以下方面考虑: 根据企业实际服务的场景和积累的数据量,评估是否需要构建行业模型,如电商、金融等。 根据每个客户的金牌客服话术,可以对对话模型进行有监督微调,进一步优化其性能。 根据每个客户的实际对话知识,如帮助文档、
来源一:真实业务场景数据。 来源二:基于大模型的数据泛化。基于目标场任务的分析,通过人工标注部分数据样例,然后利用大模型(如盘古提供的任意规格的基础功能模型)采用self-instruct等方式,泛化出更多的业务场景数据。 方法一:在大模型输入的Prompt中包含“人设赋予”、“任务描
如何调整推理参数,使模型效果最优 为什么微调后的模型,回答总是在重复某一句或某几句话 为什么微调后的模型,回答中会出现乱码 为什么微调后的模型,回答会异常中断 为什么微调后的模型,只能回答在训练样本中学过的问题 为什么微调后的模型,输入与训练样本相似的问题,回答与训练样本完全不同 为
清洗数据集(可选) 清洗算子功能介绍 获取数据清洗模板 创建数据集清洗任务 父主题: 准备盘古大模型训练数据集
为什么微调后的模型,评估结果很好,但实际场景表现却很差 当您在微调过程中,发现模型评估的结果很好,一旦将微调的模型部署以后,输入一个与目标任务同属的问题,回答的结果却不理想。这种情况可能是由于以下几个原因导致的,建议您依次排查: 测试集质量:请检查测试集的目标任务和分布与实际场景
清洗算子功能介绍 数据清洗是提高数据质量的重要环节,包括去除异常的字符、去除表情符号和去除个人敏感内容等,经过清洗的数据可以提升训练阶段的稳定性。 平台支持通过以下清洗能力: 表1 清洗算子说明 算子类型 功能 说明 数据转换 全角转半角 将文本中的所有全角字符转换成半角字符。 中文繁简体互转
话题重复度控制主要用于控制模型输出的话题重复程度。 参数设置正值,模型倾向于生成新的、未出现过的内容;参数设置负值,倾向于生成更加固定和统一的内容。 如果您没有专业的调优经验,可以优先使用建议,再结合推理的效果动态调整。 为了让您更好的理解这几个参数的作用,如下列举了一些常见场景,以及对应的调参指导,供您参考:
采样”等参数的设置,适当增大其中一个参数的值,可以提升模型回答的多样性。 数据质量:请检查训练数据中是否存在文本重复的异常数据,可以通过规则进行清洗。 训练参数设置:若数据质量存在问题,且因训练参数设置的不合理而导致过拟合,该现象会更加明显。请检查训练参数中的 “训练轮次”或“学
数据量满足要求,为什么微调后的效果不好 这种情况可能是由于以下原因导致的,建议您排查: 数据质量:请检查训练数据的质量,若训练样本和目标任务不一致或者分布差异较大、样本中存在异常数据、样本的多样性较差,都将影响模型训练的效果,建议提升您的数据质量。 父主题: 典型训练问题和优化策略
前是第三轮对话,数据中的问题字段需要包含第一轮的问题、第一轮的回答、第二轮的问题、第二轮的回答以及第三轮的问题,答案字段则为第三轮的回答。以下给出了几条多轮问答的数据样例供您参考: 原始对话示例: A:你是谁? B:您好,我是盘古大模型。 A:你可以做什么? B:我可以做很多事情,比如xxxx
大模型是什么 大模型是大规模预训练模型的简称,也称预训练模型或基础模型。所谓预训练模型,是指在一个原始任务上预先训练出一个初始模型,然后在下游任务中对该模型进行精调,以提高下游任务的准确性。大规模预训练模型则是指模型参数达到千亿、万亿级别的预训练模型。此类大模型因具备更强的泛化能
在清洗数据时,用户可以通过组合不同的数据清洗算子来实现数据清洗功能。平台提供了多种数据清洗模板,用户可以直接套用这些模板进行数据清洗。 数据清洗模板获取方式如下: 登录盘古大模型套件平台。 在左侧导航栏中选择“数据工程 > 数据清洗”,进入“清洗模板”页面,在该页面查看预置的数据清洗模板。 图1
数据量和质量均满足要求,为什么微调后的效果不好 这种情况可能是由于以下原因导致的,建议您排查: 训练参数设置:您可以通过绘制Loss曲线查询来确认模型的训练过程是否出现了问题,这种情况大概率是由于训练参数设置的不合理而导致了欠拟合或过拟合。请检查训练参数中的 “训练轮次”或“学习率”等参数的设置,根据实际情况调整训练参数,帮助模型更好学习。
大模型的安全性需要从哪些方面展开评估和防护 盘古大模型的安全性主要从以下方面考虑: 数据安全和隐私保护:大模型涉及大量训练数据,这些数据是重要资产。为确保数据安全,需在数据和模型训练的全生命周期内,包括数据提取、加工、传输、训练、推理和删除的各个环节,提供防篡改、数据隐私保护、加
有问题。即使您的目标场景依赖垂域背景知识,微调也并非最佳方案,比如: 场景微调的数据量很少或者数据质量很差:微调对数据量和数据质量有很高的要求,需要使用高质量的数据进行模型训练。 垂域知识问答场景:通用模型本身已经具有在给定的一段或几段段落知识的场景下进行总结回答的能力。因此,如