检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
distributed.launch命令启动训练作业。 创建训练作业的关键参数如表2所示。 表2 创建训练作业(自定义镜像+torch.distributed.launch命令) 参数名称 说明 创建方式 选择“自定义算法”。 启动方式 选择“自定义”。 镜像 选择用于训练的PyTorch镜像。 代码目录
或隔离节点,并重启训练作业,提高训练成功率。为了避免丢失训练进度、浪费算力。此功能已适配断点续训练。 图2 开启故障重启 断点续训练是通过checkpoint机制实现。checkpoint机制是在模型训练的过程中,不断地保存训练结果(包括但不限于EPOCH、模型权重、优化器状态、
训练tokenizer文件说明 在训练开始前,有些模型需要对模型的tokenizer文件,或者模型的配置文件进行修改,具体的修改如下: Qwen-VL 修改文件modeling_qwen.py: # 将36 37 两行注释部分 36 SUPPORT_BF16 = SUPPORT_CUDA
instruction:描述模型应执行的任务。指令中的每一条都是唯一的。 input:任务的可选上下文或输入。instruction 对应的内容会与 input 对应的内容拼接后作为指令,即指令为 instruction\ninput。 output:生成的指令的答案。 [ {
page2pix(self, doc, page, trans): """ 根据给定的参数,解析当前页作为图片数据 """ # 获取指定页面的pdf格式,注意:页面参数是事先解析出来的,不然会存在问题。 return doc[page].getPixmap(matrix=trans
训练tokenizer文件说明 在训练开始前,需要针对模型的tokenizer文件进行修改,不同模型的tokenizer文件修改内容如下,您可在创建的Notebook中对tokenizer文件进行编辑。 Yi模型 在使用Yi模型的chat版本时,由于transformer 4.3
训练tokenizer文件说明 在训练开始前,需要针对模型的tokenizer文件进行修改,不同模型的tokenizer文件修改内容如下,您可在创建的Notebook中对tokenizer文件进行编辑。 Yi模型 在使用Yi模型的chat版本时,由于transformer 4.3
训练tokenizer文件说明 在训练开始前,需要针对模型的tokenizer文件进行修改,不同模型的tokenizer文件修改内容如下,您可在创建的Notebook中对tokenizer文件进行编辑。 Yi模型 在使用Yi模型的chat版本时,由于transformer 4.3
训练tokenizer文件说明 在训练开始前,需要针对模型的tokenizer文件进行修改,不同模型的tokenizer文件修改内容如下,您可在创建的Notebook中对tokenizer文件进行编辑。 Yi模型 在使用Yi模型的chat版本时,由于transformer 4.3
查看预测大模型训练状态与指标 模型启动训练后,可以在模型训练列表中查看训练任务的状态,单击任务名称可以进入详情页查看训练结果、训练任务详情和训练日志。 查看模型训练状态 在模型训练列表中查看训练任务的状态,各状态说明详见表1。 表1 训练状态说明 训练状态 训练状态含义 初始化
1000 用于模型中间版本地保存。 当参数值>=TRAIN_ITERS时,生成模型仅保存经过TRAIN_ITERS次训练后的最后一个版本。 当参数值<TRAIN_ITERS时,生成模型会每经过SAVE_INTERVAL次,保存一次模型版本。 模型版本保存次数=TRAIN_ITERS//SAVE_INTERVAL+1
训练性能测试 流程图 训练性能测试流程图如下图所示: 图1 训练性能测试流程 执行训练任务 进入test-benchmark目录执行训练命令,可以多次执行,卡数及其它配置参考NPU卡数取值表按自己实际情况决定。 单机<可选>: # 默认8卡 benchmark-cli train
instruction:描述模型应执行的任务。指令中的每一条都是唯一的。 input:任务的可选上下文或输入。instruction 对应的内容会与 input 对应的内容拼接后作为指令,即指令为 instruction\ninput。 output:生成的指令的答案。 [ {
instruction:描述模型应执行的任务。指令中的每一条都是唯一的。 input:任务的可选上下文或输入。instruction 对应的内容会与 input 对应的内容拼接后作为指令,即指令为 instruction\ninput。 output:生成的指令的答案。 [ {
训练脚本说明 训练启动脚本说明和参数配置 训练的数据集预处理说明 训练的权重转换说明 训练tokenizer文件说明 父主题: 主流开源大模型基于Standard适配PyTorch NPU训练指导(6.3.905)
训练脚本说明 训练启动脚本说明和参数配置 训练的数据集预处理说明 训练的权重转换说明 训练tokenizer文件说明 父主题: 主流开源大模型基于Standard适配PyTorch NPU训练指导(6.3.906)
跑一些简单的不重要的实验。在这类场景下,当有高优先级任务的时候,需要能比低优先级任务更快进入排队队列。 在资源使用高峰期,用户可以通过提供或降低训练作业的优先级,来动态调节作业的执行顺序,保障关键业务的及时运行。 约束限制 仅使用新版专属资源池训练时才支持设置训练作业优先级。公共
训练脚本说明 yaml配置文件参数配置说明 各个模型深度学习训练加速框架的选择 模型NPU卡数取值表 各个模型训练前文件替换 父主题: 主流开源大模型基于Lite Server适配LlamaFactory PyTorch NPU训练指导(6.3.907)
训练脚本说明 训练启动脚本说明和参数配置 训练的数据集预处理说明 训练的权重转换说明 训练tokenizer文件说明 父主题: 主流开源大模型基于Standard+OBS适配ModelLink PyTorch NPU训练指导(6.3.911)
训练脚本说明 训练启动脚本说明和参数配置 训练的数据集预处理说明 训练中的权重转换说明 训练tokenizer文件说明 父主题: 主流开源大模型基于Lite Server适配PyTorch NPU训练指导(6.3.905)