检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
配额限制 盘古大模型服务的配额限制详见表2。 表2 配额限制 资源类型 默认配额限制 是否支持调整 模型实例 ModelArts Studio平台上,单个用户最多可创建和管理2000个模型实例。 是 如果希望申请提升配额,请联系客服。 功能限制 盘古大模型服务的功能限制详见表3。
数据批量大小是指对数据集进行分批读取训练时,所设定的每个批次数据大小。批量大小越大,训练速度越快,但是也会占用更多的内存资源,并且可能导致收敛困难或者过拟合;批量大小越小,内存消耗越小,但是收敛速度会变慢,同时模型更容易受到数据噪声的影响,从而导致模型收敛困难。 您可根据数据和模型的规
盘古CV大模型能力与规格 盘古CV大模型基于海量图像、视频数据和盘古独特技术构筑的视觉基础模型,赋能行业客户利用少量场景数据对模型微调即可实现特定场景任务。 ModelArts Studio大模型开发平台为用户提供了多种规格的CV大模型,以满足不同场景和需求。以下是当前支持的模型
保证数据的多样性。建议将不同文本构建为不同的场景,甚至将同一段文本构建为多个不同的场景。 不同规格的模型支持的长度不同,当您将无监督数据构建为有监督数据时,请确保数据长度符合模型长度限制。 父主题: 大模型微调训练类问题
文字,用于描述变量的含义或作用。 提示词评估数据集约束限制 上传文件限xlsx格式。 数据行数不小于10行,不大于50行。 数据不允许相同表头,表头数量小于20个。 数据单条文本长度不超过1000。 创建数据集时会对相关限制条件进行校验。 数据参考格式如下: 图1 数据参考格式 图2
推理参数设置:请检查推理参数中的“最大Token限制”参数的设置,适当增加该参数的值,可以增大模型回答生成的长度,避免生成异常截断。请注意,该参数值存在上限,请结合目标任务的实际需要以及模型支持的长度限制来调整。 模型规格:不同规格的模型支持的长度不同,若目标任务本身需要生成的长
的值,来获得模型回答,提升评测效率。 同时,撰写提示词过程中,可以通过设置模型参数来控制模型的生成行为,如调整温度、核采样、最大Token限制等参数。模型参数的设置会影响模型的生成质量和多样性,因此需要根据不同的场景进行选择。 登录ModelArts Studio大模型开发平台,进入所需空间。
模型配置 模型选择 选择已部署的模型。 核采样 模型在输出时会从概率最高的词汇开始选择,直到这些词汇的总概率累积达到核采样值,核采样值可以限制模型选择这些高概率的词汇,从而控制输出内容的多样性。建议不要与温度同时调整。 温度 用于控制生成结果的随机性。调高温度,会使得模型的输出更
最大值:不同模型支持的token长度,请参见《产品介绍》“模型能力与规格 > 盘古NLP大模型能力与规格”章节。 缺省值:默认部署时token长度最大值,请参见《产品介绍》“模型能力与规格 > 盘古NLP大模型能力与规格”章节。 说明: token是指模型处理和生成文本的基本单位。t
按需计费是一种后付费模式,即先使用再付费,按照实际使用时长计费。 在购买后,如果发现当前计费模式无法满足业务需求,您还可以变更计费模式。详细介绍请参见变更计费模式。 计费项 盘古大模型的计费项由模型订阅、数据资源、训练资源和推理资源费用组成。了解每种计费项的详细信息,请参考计费项。
知识型Agent:以大模型为任务执行核心,用户通过配置Prompt、知识库等信息,实现工具自主规划与调用,优点是可零码开发,对话过程更为智能,缺点是当大模型受到输入限制,难以执行链路较长且复杂的流程。 流程型Agent:以工作流为任务执行核心,用户通过在画布上对节点进行“拖拉拽”即可搭建出任务流程,场景的
等信息,使得大模型能够自主规划和调用工具。 优点:零代码开发,对话过程智能化。 缺点:大模型在面对复杂的、长链条的流程时可能会受到输入长度限制,难以有效处理较为复杂的工作流。 流程型Agent:以工作流为任务执行核心,用户可以通过在画布上“拖拽”节点来搭建任务流程。支持编排的节点
Lora矩阵的轶 较高的取值意味着更多的参数被更新,模型具有更大的灵活性,但也需要更多的计算资源和内存。较低的取值则意味着更少的参数更新,资源消耗更少,但模型的表达能力可能受到限制。 Agent微调 在训练Agent所需的NLP大模型时,可以开启此参数。通过调整训练数据中的Pro
盘古专业大模型能力与规格 盘古专业大模型是盘古百亿级NL2SQL模型,适用于问数场景下的自然语言问题到SQL语句生成,支持常见的聚合函数(如去重、计数、平均、最大、最小、合计)、分组、排序、比较、条件(逻辑操作、离散条件、范围区间等条件的混合和嵌套)、日期操作,支持多表关联查询。
模型的输出更多样性和创新性。 默认值:0 核采样 控制生成文本多样性和质量。调高核采样可以使输出结果更加多样化。 默认值:1.0 最大口令限制 用于控制聊天回复的长度和质量。 默认值:2048 话题重复度控制 用于控制生成文本中的重复程度。调高参数模型会更频繁地切换话题,从而避免生成重复内容。
在“升级配置”中,选择以下两种升级模式: 全量升级:新旧版本服务同时运行,直至新版本完全替代旧版本。在新版本部署完成前,旧版本仍可使用。需要该服务所消耗资源的2倍,用于保障全量一次性升级。 滚动升级:部分实例资源空出用于滚动升级,逐个或逐批停止旧版本并启动新版本。滚动升级时可修
root: Train valid number is 0. 该日志表示数据集中的有效样本量为0,可能有如下原因: 数据未标注。 标注的数据不符合规格。 请检查数据是否已标注或标注是否符合算法要求。 训练日志提示“ValueError: label_map not match” 训练日志中提示“ValueError:
”,在“插件”页签,单击右上角“创建插件”。 输入插件名称及插件描述,配置完成单击“下一步”。 图6 创建插件 为保证插件检索的效果,平台限制插件名称必须为英文、下划线组合,插件描述会影响插件的选用。 填写“插件URL”(步骤1:获取文本翻译服务Token与调用地址中获取的文本翻
01 了解 了解盘古大模型的概念、优势、应用场景以及模型能力与规格,您将更全面地掌握其强大功能,助力您在不同领域实现创新,加速业务智能化升级。 产品介绍 什么是盘古大模型 产品优势 应用场景 产品功能 模型能力与规格 基础知识 03 入门 通过快速入门引导,您将快速熟悉平台的核心
在“升级配置”中,选择以下两种升级模式: 全量升级:新旧版本服务同时运行,直至新版本完全替代旧版本。在新版本部署完成前,旧版本仍可使用。需要该服务所消耗资源的2倍,用于保障全量一次性升级。 滚动升级:部分实例资源空出用于滚动升级,逐个或逐批停止旧版本并启动新版本。滚动升级时可修