检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
是 List 流程列表,请参见表3。 表3 flows参数说明 参数名称 是否必选 参数类型 说明 name 是 String 流程名称,由汉字、数字、字母、下划线、中划线、空格组成,最大长度60字符。 rules 是 List 每个Flow配置不同流量和候选集的规则,请参见表4。
Double 用来动态调整学习步长。取值范围(0,1],默认值为0.1。 L1正则项系数(lambda1) 是 Double 叠加在模型的1范数之上,用来对模型值进行限制防止过拟合。取值范围[0,1],默认值为0。 L2正则项系数(lambda2) 是 Double 叠加在模型的2范数之上,
batch模式计算速度快于full模式。 L2正则项系数 叠加在模型的2范数之上,用来对模型值进行限制防止过拟合。默认0。 隐向量层L2正则化系数 隐向量层使用的L2正则化系数,作用如“L2正则项系数”描述。默认0.001。 wide部分L2正则化系数 wide层使用的L2正则化系数,作用如“L2正则项系数”描述。默认0
个性化配置 匹配特征对 匹配用户和物品特征,以便于筛选出该用户相关联的物品进行推荐。 用户特征名:从下拉框中选择目标用户特征用于和物品特征进行匹配。 物品特征名:从下拉框中选择目标物品特征用于匹配用户特征,更好的做出推荐。 权重:取值为0.01-1。权重越高,该匹配特征所被优先推荐的概率越高。
1。 L1正则项系数:叠加在模型的1范数之上,用来对模型值进行限制防止过拟合。默认0。 L2正则项系数:叠加在模型的2范数之上,用来对模型值进行限制防止过拟合。默认0。 L2正则项系数 叠加在模型的2范数之上,用来对模型值进行限制防止过拟合。默认0。 正则损失计算方式 正则损失计算当前有两种方式。
参数类型 说明 strategy_type 是 String 策略类型(可选值) 召回策略:recall name 是 String 策略别名,由汉字、数字、字母、下划线、中划线、空格组成。 algorithm_type 是 String 算法类型。 parameter 是 String
功能名称 功能描述 阶段 相关文档 1 推荐系统2.0全新上线 推荐系统支持用户自定义场景和智能场景。智能场景根据场景类型预置好对应的智能算法,为匹配的场景提供智能推荐服务。自定义场景面向了解推荐算法等相关的用户,可自定义推荐中涉及算法的使用和组合,能够自定义开发推荐流程,提供推荐服务。
生成推荐系统内部通用的数据格式。 数据质量管理 选择并配置推荐业务 智能场景 针对对应的场景,由RES根据场景类型预置好对应的智能算法,为匹配的场景提供智能推荐服务。 智能场景简介 自定义场景 面向了解推荐算法等相关的用户,可自定义推荐中涉及算法的使用和组合,能够自定义开发推荐流程,提供推荐服务。
生成推荐系统内部通用的数据格式。 数据质量管理 选择并配置推荐业务 智能场景 针对对应的场景,由RES根据场景类型预置好对应的智能算法,为匹配的场景提供智能推荐服务。 智能场景简介 自定义场景 面向了解推荐算法等相关的用户,可自定义推荐中涉及算法的使用和组合,能够自定义开发推荐流程,提供推荐服务。
中的数据类型信息组成的数据格式的列表,其中属性值或属性权重可以不提供,权重信息不提供的场景下采用默认值“0.01”。需要在部署服务时与属性匹配重排序配合使用。格式如下:[{"name":"age","value":"中年","item_data_type":"strArray"}
称。 综合排序 综合排序即根据客体和主体的相关属性进行重排序处理。 属性匹配,单击添加匹配特征对,如用户特征名为city,物品特征名选择tags,权重值设置为1,其意思为根据选定的主体和客体相关属性对的匹配情况累计权重值。 数值比较,单击添加属性权重,在下拉列表中选择属性名称,设
特征工程常用于抽取用户、物品的特征和特定算法的特征生成,一般作为某些算法的前置输入条件。 特征工程 召回策略 召回策略用于生成推荐的候选集,在原始数据中通过算法和规则匹配用户的候选集。 召回策略 排序策略 排序策略根据不同的算法模型对召回策略或者近线策略生成的候选集进行重排序,得到推荐候选集列表。 排序策略
有在线服务正在运行,无法修改在线并发规格 请检查是否有在线服务正在运行。 400 RES.3004 Basic Error 数据库资源模型配置出错 请联系管理员检查数据库模型配置。 400 RES.3005 Basic Error 数据源连接配额不足 您可以构建最多5数据连接。请及时清理连接。
基于物品的协同过滤推荐 基于用户的协同过滤推荐 基于交替最小二乘的矩阵分解推荐 业务规则-基于历史行为记忆生成候选集 业务规则-人工导入 基于特征匹配的召回策略 基于UCB的召回策略 近线召回 基于物品相似度的实时召回 基于用户相似度的实时召回 在“创建自定义场景”页面,进入“召回策略”
st.add(putRecordsRequestEntry); putRecordsRequest.setRecords(putRecordsRequestEntryList); dic.putRecords(putRecordsRequest); } catch
st.add(putRecordsRequestEntry); putRecordsRequest.setRecords(putRecordsRequestEntryList); dic.putRecords(putRecordsRequest); } catch
向上前进步长的参数。默认0.1。 初始梯度累加和:梯度累加和用来调整学习步长。默认0.1。 L1正则项系数:叠加在模型的1范数之上,用来对模型值进行限制防止过拟合。默认0。 L2正则项系数:叠加在模型的2范数之上,用来对模型值进行限制防止过拟合。默认0。 - 父主题: 用户指南(旧版)
可传入不同类型的标签信息(如人工标签,关键词标签等)。 此标签体系需与物品标签体系相同。如果无历史兴趣标签,则无需传入此字段。推荐系统将会根据特定行为匹配的标签进行计算并完成更新。 说明: 传入TAGS字段会直接覆盖原程序中已计算出的兴趣标签权重。 否 CONTEXT Json 用户上下文信
选择功能,该功能指定为"keywords"。 响应消息 响应参数请参见表2。 表2 响应参数说明 参数名称 是否必选 参数类型 说明 result 是 String 一个由抽取出来的无序的关键词集合生成的字符串,以空格连接。 示例 请求示例 { "mode":"keywords", "title":[
如不设置,代表永不失效。 否 同时,expireTime字段和status字段一样,都可以通过实时数据推送方式,进行字段的更新。该字段为非必选,如不传入,则不会进行失效处理。 示例: 配置新闻在上架五天后进行自动下架。 物品JSON数据: { "itemId": "item1"