检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
使用该标签可区分不同节点,可结合工作负载的亲和能力实现容器Pod调度到指定节点的功能。 污点:默认为空。支持给节点加污点来设置反亲和性,每个节点最多配置5条污点。 安装后执行脚本:请输入脚本命令,命令中不能包含中文字符,需传入Base64转码后的脚本,转码后的字符数不能超过20
备信息。 npu-smi info # 在每个实例节点上运行此命令可以看到NPU卡状态 npu-smi info -l | grep Total # 在每个实例节点上运行此命令可以看到总卡数 如出现错误,可能是机器上的NPU设备没有正常
Step1 创建用户组并加入用户 主用户账号下面可以创建多个子账号,并对子账号的权限进行分组管理。此步骤介绍如何创建用户组、子账号、并将子账号加入用户组中。 主用户登录管理控制台,单击右上角用户名,在下拉框中选择“统一身份认证”,进入IAM服务。 图1 统一身份认证 创建用户组。
String 输入数据的映射类型,可选“file”或“csv”。 file指每个推理请求对应到输入数据目录下的一个文件,当使用此方式时,此模型对应req_uri只能有一个输入参数且此参数的类型是file。 csv指每个推理请求对应到csv里的一行数据,当使用此方式时,输入数据目录下的文件只能以
备信息。 npu-smi info # 在每个实例节点上运行此命令可以看到NPU卡状态 npu-smi info -l | grep Total # 在每个实例节点上运行此命令可以看到总卡数 如出现错误,可能是机器上的NPU设备没有正常
警提示。 图2 作业列表显示作业资源利用率情况 此处的作业资源利用率只涉及GPU和NPU资源。作业worker-0实例的GPU/NPU平均利用率计算方法:将作业worker-0实例的各个GPU/NPU加速卡每个时间点的利用率汇总取平均值。 如何提高训练作业资源利用率 适当增大ba
备信息。 npu-smi info # 在每个实例节点上运行此命令可以看到NPU卡状态 npu-smi info -l | grep Total # 在每个实例节点上运行此命令可以看到总卡数 如出现错误,可能是机器上的NPU设备没有正常
备信息。 npu-smi info # 在每个实例节点上运行此命令可以看到NPU卡状态 npu-smi info -l | grep Total # 在每个实例节点上运行此命令可以看到总卡数 如出现错误,可能是机器上的NPU设备没有正常
可对音频进行一键式批量添加标签,快速完成对音频的标注操作,也可以对已标注音频修改或删除标签进行重新标注。音频标注涉及到的标注标签和声音内容只支持中文和英文,不支持小语种。 声音分类是对声音进行分类。语音内容是对语音内容进行标注。语音分割是对语音进行分段标注。 开始标注 登录Mod
用户可以根据实际需求选择诊断类别。 (可选)设置标签 如果需要通过标签实现资源分组管理,可以在“高级选项”处勾选“现在配置”,可以设置训练作业的“标签”。标签详细用法请参见使用TMS标签实现资源分组管理。 后续操作 当创建训练作业的参数配置完成后,单击“提交”,在信息确认页面单击“确定”,提交创建训练作业任务。
标注物体检测数据 物体检测之前,首先需考虑如何设计标签,标签设计需要对应所检测图片的明显特征,并且选择的标签比较容易识别(画面主体物与背景区分度较高),每个标签就是对所检测图片期望识别的全部结果。物体的标签设计完成之后,基于设计好的标签准备该图片的数据,每种需识别出的标签,建议应在所有图片个数
Workflow Workflow是开发者基于实际业务场景开发用于部署模型或应用的流水线工具,核心是将完整的机器学习任务拆分为多步骤工作流,每个步骤都是一个可管理的组件,可以单独开发、优化、配置和自动化。Workflow有助于标准化机器学习模型生成流程,使团队能够大规模执行AI任务,并提高模型生成的效率。
备信息。 npu-smi info # 在每个实例节点上运行此命令可以看到NPU卡状态 npu-smi info -l | grep Total # 在每个实例节点上运行此命令可以看到总卡数 如出现错误,可能是机器上的NPU设备没有正常
修改Standard专属资源池支持的作业类型 迁移Standard专属资源池和网络至其他工作空间 配置Standard专属资源池可访问公网 使用TMS标签实现资源分组管理 管理Standard专属资源池的游离节点 释放Standard专属资源池和删除网络 父主题: ModelArts Standard资源管理
低。 希望提升训练效率,同时减少与对象存储OBS的交互。可通过如下方式进行调整优化。 优化原理 对于ModelArts提供的GPU资源池,每个训练节点会挂载500GB的NVMe类型SSD提供给用户免费使用。此SSD挂载到“/cache”目录,“/cache”目录下的数据生命周期与
对于不同类型的数据,用户可以选择不同的标注类型。当前ModelArts支持如下类型的标注作业: 图片 图像分类:识别一张图片中是否包含某种物体。 物体检测:识别出图片中每个物体的位置及类别。 图像分割:根据图片中的物体划分出不同区域。 音频 声音分类:对声音进行分类。 语音内容:对语音内容进行标注。 语音分割:对语音进行分段标注。
JobAlgorithmResponse object 训练作业算法。目前支持三种形式: id:只取算法的id; subscription_id+item_version_id:取算法的订阅id和版本id; code_dir+boot_file:取训练作业的代码目录和启动文件。 tasks Array of TaskResponse
备信息。 npu-smi info # 在每个实例节点上运行此命令可以看到NPU卡状态 npu-smi info -l | grep Total # 在每个实例节点上运行此命令可以看到总卡数 如出现错误,可能是机器上的NPU设备没有正常
对于不同类型的数据集,用户可以选择不同的标注任务,当前ModelArts支持如下类型的标注任务。 图片 图像分类:识别一张图片中是否包含某种物体。 物体检测:识别出图片中每个物体的位置及类别。 图像分割:根据图片中的物体划分出不同区域。 音频 声音分类:对声音进行分类。 语音内容:对语音内容进行标注。 语音分割:对语音进行分段标注。
备信息。 npu-smi info # 在每个实例节点上运行此命令可以看到NPU卡状态 npu-smi info -l | grep Total # 在每个实例节点上运行此命令可以看到总卡数 如出现错误,可能是机器上的NPU设备没有正常