检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
区域。 数据集要求 文件格式要求为txt或者csv,文件大小不能超过8MB。 以换行符作为分隔符,每行数据代表一个标注对象。 文本分类目前只支持中文。 数据上传至OBS 在本文档中,采用通过OBS管理控制台将数据上传至OBS桶。 OBS上传文件的规范: 如不需要提前上传训练数据,
停止智能任务 功能介绍 停止智能任务,支持停止“智能标注”和“自动分组”两大类智能任务。可通过指定路径参数“task_id”来停止某个具体任务。 调试 您可以在API Explorer中调试该接口,支持自动认证鉴权。API Explorer可以自动生成SDK代码示例,并提供SDK代码示例调试功能。
Workflow Workflow是开发者基于实际业务场景开发用于部署模型或应用的流水线工具,核心是将完整的机器学习任务拆分为多步骤工作流,每个步骤都是一个可管理的组件,可以单独开发、优化、配置和自动化。Workflow有助于标准化机器学习模型生成流程,使团队能够大规模执行AI任务,并提高模型生成的效率。
单模型性能调优AOE 使用AOE工具可以在模型转换阶段对于模型运行和后端编译过程进行执行调优,注意AOE只适合静态shape的模型调优。在AOE调优时,容易受当前缓存的一些影响,建议分两次进行操作,以达到较好的优化效果(第一次执行生成AOE的知识库,在第二次使用时可以复用)。在该
support_export 否 Boolean 是否过滤只支持导出的数据集(当前仅图像分类、物体检测、自由格式三种数据集支持导出),不传该参数或参数取值为false表示不过滤。可选值如下: true:过滤只支持导出的数据集 false:不过滤只支持导出的数据集(默认值) train_evaluate_ratio
低。 希望提升训练效率,同时减少与对象存储OBS的交互。可通过如下方式进行调整优化。 优化原理 对于ModelArts提供的GPU资源池,每个训练节点会挂载500GB的NVMe类型SSD提供给用户免费使用。此SSD挂载到“/cache”目录,“/cache”目录下的数据生命周期与
备信息。 npu-smi info # 在每个实例节点上运行此命令可以看到NPU卡状态 npu-smi info -l | grep Total # 在每个实例节点上运行此命令可以看到总卡数 如出现错误,可能是机器上的NPU设备没有正常
备信息。 npu-smi info # 在每个实例节点上运行此命令可以看到NPU卡状态 npu-smi info -l | grep Total # 在每个实例节点上运行此命令可以看到总卡数 如出现错误,可能是机器上的NPU设备没有正常
training_files:必选参数,3中初始化的训练文件。 outputs:可选参数,这里传入的是一个list,每个元素都是4中初始化的训练输出。 parameters:可选参数,一个list,每个元素都是一个字典,包含"name"和"value"两个字段,以"--name=value"的形式传
备信息。 npu-smi info # 在每个实例节点上运行此命令可以看到NPU卡状态 npu-smi info -l | grep Total # 在每个实例节点上运行此命令可以看到总卡数 如出现错误,可能是机器上的NPU设备没有正常
备信息。 npu-smi info # 在每个实例节点上运行此命令可以看到NPU卡状态 npu-smi info -l | grep Total # 在每个实例节点上运行此命令可以看到总卡数 如出现错误,可能是机器上的NPU设备没有正常
String 输入数据的映射类型,可选“file”或“csv”。 file指每个推理请求对应到输入数据目录下的一个文件,当使用此方式时,此模型对应req_uri只能有一个输入参数且此参数的类型是file。 csv指每个推理请求对应到csv里的一行数据,当使用此方式时,输入数据目录下的文件只能以
备信息。 npu-smi info # 在每个实例节点上运行此命令可以看到NPU卡状态 npu-smi info -l | grep Total # 在每个实例节点上运行此命令可以看到总卡数 如出现错误,可能是机器上的NPU设备没有正常
标注物体检测数据 物体检测之前,首先需考虑如何设计标签,标签设计需要对应所检测图片的明显特征,并且选择的标签比较容易识别(画面主体物与背景区分度较高),每个标签就是对所检测图片期望识别的全部结果。物体的标签设计完成之后,基于设计好的标签准备该图片的数据,每种需识别出的标签,建议应在所有图片个数
警提示。 图2 作业列表显示作业资源利用率情况 此处的作业资源利用率只涉及GPU和NPU资源。作业worker-0实例的GPU/NPU平均利用率计算方法:将作业worker-0实例的各个GPU/NPU加速卡每个时间点的利用率汇总取平均值。 如何提高训练作业资源利用率 适当增大ba
权限控制更加精确。 同样在我的凭证下,您可以查看项目ID。 图1 项目隔离模型 企业项目 企业项目是项目的升级版,针对企业不同项目间资源的分组和管理,是逻辑隔离。企业项目中可以包含多个区域的资源,且项目中的资源可以迁入迁出。 关于企业项目ID的获取及企业项目特性的详细信息,请参见《企业管理服务用户指南》。
全参微调:直接在模型上训练,影响模型全量参数的微调训练,效果较好,收敛速度较慢,训练时间较长。 LoRA微调:冻结原模型,通过往模型中加入额外的网络层,并只训练这些新增的网络层参数,效果接近或略差于全参训练,收敛速度快,训练时间短。 参见表3 调优后的模型名称 设置调优后产生的新模型的名称。 参见表3
String 输入数据的映射类型,可选“file”或“csv”。 file指每个推理请求对应到输入数据目录下的一个文件,当使用此方式时,此模型对应req_uri只能有一个输入参数且此参数的类型是file。 csv指每个推理请求对应到csv里的一行数据,当使用此方式时,输入数据目录下的文件只能以
表示物体越靠近边缘。(图片总距离表示以图片中心点为起点画一条经过标注框中心点的射线,该射线与图片边界交点到图片中心点的距离)。 纵坐标:框数量(统计所有图片中的框)。 一般呈正态分布。用于判断物体是否处于图片边缘,有一些只露出一部分的边缘物体,可根据需要添加数据集或不标注。 按堆叠度统计框数量的分布
中一个或多个。 文件名或目录:根据文件名称或者文件存储目录筛选。 标注人:选择执行标注操作的账号名称。 样本属性:表示自动分组生成的属性。只有启用了自动分组任务后才可使用此筛选条件。 数据属性:筛选数据的来源,选择“全部”或“推理”。 图1 筛选条件 查看已标注图片 在标注任务详