检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
Loss)是一种衡量模型预测结果和真实结果差距的指标,通常情况下越小越好。 一般来说,一个正常的Loss曲线是单调递减的,即随着训练的进行,Loss值不断减小,直到收敛到一个较小的值。以下给出了几种正常的Loss曲线形式: 图2 正常的Loss曲线:平滑下降 图3 正常的Loss曲线:阶梯下降 如果
开启内容审核后,可以有效拦截大模型输入、输出的有害信息,保障模型调用安全。 NLP模型在流式输出时,同样支持内容审核。特别是模型生成超长内容时,通过实时审核模型生成的内容片段,可以有效降低首token的审核时延,同时确保用户看到的内容是经过严格审核的。 图3 大模型内容审核 购买内容审核
token解析失败,请检查获取token的方法,请求体信息是否填写正确,token是否正确;检查获取token的环境与调用的环境是否一致。 token超时(token expires) ,请重新获取token,使用不过期的token。 请检查AK/SK是否正确(AK对应的SK错误,不匹配;AK/SK中多填了空格)。
评估概览:查看此次评估任务的各个规则指标评分情况。 模型结果分析:查看各个模型此次评估任务的基于各个指标的评分情况,以及具体到某条数据的打分情况。 用户可以将此次的评估报告通过导出按钮全部导出至本地存储,文件导出格式为CSV。 图3 评估报告页面 评估日志: 平台支持查看本次模型评估任务的详细日志
LoRA轶值 / 8、16、32、64 较高的取值意味着更多的参数被更新,模型具有更大的灵活性,但需要更多的计算资源和内存。较低的取值则意味着更少的参数更新,资源消耗更少,但模型的表达能力可能受到限制。 训练轮数 4 1~50 完成全部训练数据集训练的次数。 学习率 0.0001 0~1
从agentSession中取出要调用的工具 final AgentAction currentAction = agentSession.getCurrentAction(); log.info("Agent的状态为{},不为{},所以需要调用工具,调用的工具为{},入参为{}"
基于NLP-N2-基模型训练的单场景模型,可支持选择一个场景进行推理,如:搜索RAG方案等,具有32K上下文能力。 NLP大模型训练过程中,一般使用token来描述模型可以处理的文本长度。token(令牌)是指模型处理和生成文本的基本单位。token可以是词或者字符的片段。模型的输入和输出的文本都会
完成全部训练数据集训练的次数。 学习率 0.0001 0~1 学习率用于控制每个训练步数(step)参数更新的幅度。需要选择一个合适的学习,因为学习率过大会导致模型难以收敛,学习率过小会导致收敛速度过慢。 模型保存步数 500 10的倍数 每训练一定数量的步骤(或批次)后,模型的状态就会被保存下来。
多样性和一致性是评估LLM生成语言的两个重要方面。 多样性指模型生成的不同输出之间的差异。一致性指相同输入对应的不同输出之间的一致性。 重复惩罚 重复惩罚(repetition_penalty)是在模型训练或生成过程中加入的惩罚项,旨在减少重复生成的可能性。通过在计算损失函数(用于优化模型的指标)时增加