检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
IDEA工具,请根据指导完成开发环境配置。 MapReduce的运行环境即MapReduce客户端,请根据指导完成客户端的安装和配置。 准备MapReduce开发和运行环境 准备工程 MapReduce提供了不同场景下的样例程序,您可以导入样例工程进行程序学习。或者您可以根据指导,新建一个MapReduce工程。
群组件信息文件以及用于安全认证的用户文件,可从已创建好的MRS集群中获取相关内容。 用于程序调测或运行的节点,需要与MRS集群内节点网络互通,同时配置hosts域名信息。 准备连接Hive集群配置文件 配置并导入样例工程 HIve提供了不同场景下的多种样例程序,用户可获取样例工程并导入本地开发环境中进行程序学习。
准备运行环境 MapReduce的运行环境即MapReduce客户端,请根据指导完成客户端的安装和配置。 准备MapReduce应用运行环境 获取并导入样例工程 或者新建工程 MapReduce提供了不同场景下的样例程序,您可以导入样例工程进行程序学习。或者您可以根据指导,新建一个MapReduce工程。
0个Region,增加2G的“-Xmx”,整体的“-Xmx”的大小不超过32G。 RegionServer的GC参数配置建议 建议“-Xms”和“-Xmx”设置成相同的值,这样可以避免JVM动态调整堆内存大小时影响性能。 调整“-XX:NewSize”大小的时候,建议把其设置为“-Xmx”大小的1/8。
Streaming三个组件,其应用开发流程都是相同的。 开发流程中各阶段的说明如图1和表1所示。 图1 Spark应用程序开发流程 表1 Spark应用开发的流程说明 阶段 说明 参考文档 了解基本概念 在开始开发应用前,需要了解Spark的基本概念,根据实际场景选择需要了解的概念,分为Spark Core基本概念、Spark
文件以及用于安全认证的用户文件,可从已创建好的MRS集群中获取相关内容。 用于程序调测或运行的节点,需要与MRS集群内节点网络互通,同时配置hosts域名信息。 准备连接MapReduce集群配置文件 配置并导入样例工程 MapReduce提供了不同场景下的多种样例程序,用户可获
ALM-14003 丢失的HDFS块数量超过阈值(2.x及以前版本) 告警解释 系统每30秒周期性检测丢失的块数量,并把丢失的块数量和阈值相比较。丢失的块数量指标默认提供一个阈值范围。当检测到丢失的块数量超出阈值范围时产生该告警。 当丢失的块数量小于或等于阈值时,告警恢复。 告警属性
文件以及用于安全认证的用户文件,可从已创建好的MRS集群中获取相关内容。 用于程序调测或运行的节点,需要与MRS集群内节点网络互通,同时配置hosts域名信息。 准备ClickHouse应用运行环境 配置并导入样例工程 ClickHouse提供了不同场景下的样例程序,用户可获取样
配置文件通常包括用于安全认证的用户文件,可从已创建好的MRS集群中获取相关内容。 用于程序调测或运行的节点,需要与MRS集群内节点网络互通,同时配置hosts域名信息。 准备连接Doris集群配置文件 配置并导入样例工程 Doris提供了不同场景下的多种样例程序,用户可获取样例工程并导入本地开发环境中进行程序学习。
配置文件通常包括用于安全认证的用户文件,可从已创建好的MRS集群中获取相关内容。 用于程序调测或运行的节点,需要与MRS集群内节点网络互通,同时配置hosts域名信息。 准备连接Doris集群配置文件 配置并导入样例工程 Doris提供了不同场景下的多种样例程序,用户可获取样例工程并导入本地开发环境中进行程序学习。
个Region,增加2G的“-Xmx”,整体的“-Xmx”的大小不超过32G。 RegionServer的GC参数配置建议: 建议“-Xms”和“-Xmx”设置成相同的值,这样可以避免JVM动态调整堆内存大小时影响性能。 调整“-XX:NewSize”大小的时候,建议把其设置为“-Xmx”大小的1/8。
Streaming三个组件,其应用开发流程都是相同的。 开发流程中各阶段的说明如图1和表1所示。 图1 Spark应用程序开发流程 表1 Spark应用开发的流程说明 阶段 说明 参考文档 了解基本概念 在开始开发应用前,需要了解Spark的基本概念,根据实际场景选择需要了解的概念,分为Spark Core基本概念、Spark
SQL和Spark Streaming三个组件,其应用开发流程都是相同的。 开发流程中各阶段的说明如图1和表1所示。 图1 Spark应用程序开发流程 表1 Spark应用开发的流程说明 阶段 说明 参考文档 准备开发环境 Spark的应用程序支持使用Scala、Java、Python三种语言
Kafka客户端角色包括Producer和Consumer两个角色,其应用开发流程是相同的。 开发流程中各个阶段的说明如图1和表1所示。 图1 Kafka客户端程序开发流程 表1 Kafka客户端开发的流程说明 阶段 说明 参考文档 准备开发环境 Kafka的客户端程序当前推荐使用java语言进行开发,可使用IntelliJ
安全认证的用户文件,可从已创建好的MRS集群中获取相关内容。 用于程序调测或运行的节点,需要与MRS集群内节点网络互通,同时配置hosts域名信息。 准备连接Kafka集群配置文件 配置并导入样例工程 Kafka提供了不同场景下的样例程序,您可以导入样例工程进行程序学习。 导入并配置Kafka样例工程
读取出来,重新拼成完整的信息。而Spark2x直接使用相应的key获取对应的信息。这样在Spark2x中去读取Spark1.5创建的DataSource表时,就无法成功读取到key对应的信息,导致解析DataSource表信息失败。 而在处理Hive格式的表时,Spark2x与Spark1
给当前用户添加其他用户库表的HDFS路径的读、写、执行权限,具体配置请参考添加HDFS的Ranger访问权限策略。 在Ranger上为用户添加Spark SQL的访问策略后,需要在HDFS的访问策略中添加相应的路径访问策略,否则无法访问数据文件,具体请参考添加HDFS的Ranger访问权限策略。
Spark2x导出带有相同字段名的表,结果导出失败 问题 在Spark2x的spark-shell上执行如下语句失败: val acctId = List(("49562", "Amal", "Derry"), ("00000", "Fred", "Xanadu")) val rddLeft
code=0) 回答 Spark SQL建表底层调用的是Hive的接口,其建表时会在“/user/hive/warehouse”目录下新建一个以表名命名的目录,因此要求用户具备“/user/hive/warehouse”目录的读写、执行权限或具有Hive的group权限。 “/user/hiv
SQL无法查询到Parquet类型的Hive表的新插入数据 问题 为什么通过Spark SQL无法查询到存储类型为Parquet的Hive表的新插入数据?主要有以下两种场景存在这个问题: 对于分区表和非分区表,在Hive客户端中执行插入数据的操作后,会出现Spark SQL无法查询到最新插入的数据的问题。 对于分区表,在Spark