检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
少于xx个字的文本。”,将回答设置为符合要求的段落。 续写:根据段落的首句、首段续写成完整的段落。 若您的无监督文档没有任何结构化信息,可以将有监督的问题设置为“以下是一篇文章的第一个句子:xxx/第一段落:xxx。请根据以上的句子/段落,续写为一段不少于xx个字的文本。”,再将回答设置为符合要求的段落。
为什么其他大模型适用的提示词在盘古大模型上效果不佳 提示词与训练数据的相似度关系。 提示词的效果通常与训练数据的相似度密切相关。当提示词的内容与模型在训练过程中接触过的样本数据相似时,模型更容易理解提示词并生成相关的输出。这是因为模型通过学习大量的训练数据,逐渐建立起对特定模式、
如何调整训练参数,使盘古大模型效果最优 模型微调参数的选择没有标准答案,不同的场景,有不同的调整策略。一般微调参数的影响会受到以下几个因素的影响: 目标任务的难度:如果目标任务的难度较低,模型能较容易的学习知识,那么少量的训练轮数就能达到较好的效果。反之,若任务较复杂,那么可能就需要更多的训练轮数。 数据量级:
用更多的显存资源,这可能导致显存不足,并且会延长每次训练的时长。 学习率 学习率决定每次训练中模型参数更新的幅度。 选择合适的学习率至关重要: 如果学习率过大,模型可能无法收敛。 如果学习率过小,模型的收敛速度将变得非常慢。 热身比例 热身比例是指在模型训练初期逐渐增加学习率的过程。
如何利用提示词提高大模型在难度较高推理任务中的准确率 可以通过思维链的方式提高大模型在复杂推理任务中的准确率。 思维链是一种通过分步骤推理来提升大模型在复杂任务中表现的方法。通过引导模型思考问题的过程,可以使其在推理任务中得到更高的准确性,尤其是在涉及多步推理和复杂逻辑关系的任务中。 具体做法如下:
质量或者减小学习率的方式来解决。 图3 异常的Loss曲线:上升 Loss曲线平缓,保持高位:Loss保持平缓且保持高位不下降的原因可能是由于目标任务的难度较大,或者模型的学习率设置得过小,导致模型的收敛速度太慢,无法达到最优解。您可以尝试增大训练轮数或者增大学习率的方式来解决。
这种情况可能是由于以下原因导致的,建议您排查: 训练参数设置:您可以通过绘制Loss曲线查询来确认模型的训练过程是否出现了问题,这种情况大概率是由于训练参数设置的不合理而导致了欠拟合或过拟合。请检查训练参数中的 “训练轮次”或“学习率”等参数的设置,根据实际情况调整训练参数,帮助模型更好学习。 Pro
在“创建压缩任务”页面,选择需要压缩的基础模型,支持选择已发布模型或未发布模型。 选择压缩策略。除INT8压缩策略外,部分模型支持INT4压缩策略,可在选择模型后,根据页面展示的策略进行选择。 INT8:该压缩策略将模型参数压缩至8位字节,可以有效降低推理显存占用。 INT4:该压缩策略
科学计算大模型的训练主要分为两个阶段:预训练与微调。 预训练阶段:预训练是模型学习基础知识的过程,基于大规模通用数据集进行。例如,在区域海洋要素预测中,可以重新定义深海变量、海表变量,调整深度层、时间分辨率、水平分辨率以及区域范围,以适配自定义区域的模型场景。此阶段需预先准备区域的高精度数据。
这种情况大概率是由于训练参数设置的不合理而导致了欠拟合,模型没有学到任何知识。请检查训练参数中的 “训练轮次”或“学习率”等参数的设置,适当增大“训练轮次”的值,或根据实际情况调整“学习率”的值,帮助模型更好收敛。 数据质量:请检查训练数据的质量,若训练样本和目标任务不一致或者分布差异较大,则会加剧该现象。
Models)通常指的是具有海量参数和复杂结构的深度学习模型,广泛应用于自然语言处理(NLP)等领域。开发一个大模型的流程可以分为以下几个主要步骤: 数据集准备:大模型的性能往往依赖于大量的训练数据。因此,数据集准备是模型开发的第一步。首先,需要根据业务需求收集相关的原始数据,确保数据的覆盖面和多样性。例如
模型结构参数 深度 用于定义深度学习网络的层数。数值越大,模型复杂性越高。模型参数量会增加。然而,这也会导致模型的结果文件变大,可能会占用大量的显存。在设置深度时,需要权衡模型的复杂性和显存的使用情况。推荐设置为[2, 6]。 补丁尺度 用于将气象场划分为多个小块的大小,每个小块
可以尝试修改参数并查看模型效果。以修改“核采样”参数为例,核采样控制生成文本的多样性和质量: 当“核采样”参数设置为1时,保持其他参数不变,单击“重新生成”,再单击“重新生成”,观察模型前后两次回复内容的多样性。 图2 “核采样”参数为1的生成结果1 图3 “核采样”参数为1的生成结果2 将“核采样”参数调小至0.1
2024年11月发布的版本,仅支持32K序列长度推理部署。 在选择和使用盘古大模型时,了解不同模型所支持的操作行为至关重要。不同模型在预训练、微调、模型评测、在线推理和能力调测等方面的支持程度各不相同,开发者应根据自身需求选择合适的模型。以下是盘古NLP大模型支持的具体操作: 表2 盘古NLP大模型支持的能力
表示在模型训练初期,逐步增加学习率到预设值的训练轮次,用于帮助模型在训练初期稳定收敛,避免大幅度的参数更新导致不稳定的学习过程。 锚框的长边和短边的比例 定义检测物体锚框的长宽比。通过设置不同的长短比例,模型可以更好地适应多种尺寸和形状的物体。 锚框大小 指锚框的初始尺寸。锚框是物体检测中的一个关键
直接从数据本身派生。 有监督学习 有监督学习是机器学习任务的一种。它从有标记的训练数据中推导出预测函数。有标记的训练数据是指每个训练实例都包括输入和期望的输出。 LoRA 局部微调(LoRA)是一种优化技术,用于在深度学习模型的微调过程中,只对模型的一部分参数进行更新,而不是对所
关注专业性:微调是对预训练模型的参数进行调整,使其在特定任务中达到更高的精度和效果。微调的核心在于利用少量的特定任务数据,使模型的表现从通用性向具体任务需求过渡。 使用小规模的特定任务数据:微调通常需要小规模但高质量的标注数据,直接与目标任务相关。通过这些数据,模型可以学习到任务特定的特征和模式。
日常对话到专业领域的广泛内容,帮助模型更好地理解和生成自然语言文本,适用于多个领域的业务应用。这些数据不仅丰富多样,还为模型提供了深度和广度的语言学习基础,使其能够生成更加自然、准确且符合语境的文本。 通过对海量数据的深入学习和分析,盘古大模型能够捕捉语言中的细微差别和复杂模式,
型训练到模型调用的各个环节。平台支持全流程的模型生命周期管理,确保从数据准备到模型部署的每一个环节都能高效、精确地执行,为实际应用提供强大的智能支持。 模型训练:在模型开发的第一步,ModelArts Studio大模型开发平台为用户提供了丰富的训练工具与灵活的配置选项。用户可以
可以引导大模型生成准确率更高的结果。 单样本/多样本 可以在提示词中提供示例,让模型先学习后回答,在使用这种方法时需要约束新样例不能照抄前面给的参考样例,新样例必须多样化、不能重复等,否则可能会直接嫁接前文样例的内容,也可以约束只是让它学习参考样例的xxx生成思路、xxx风格、xxx生成方法等。