检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
选择左侧导航栏的“总览”,单击页面右上角的“登录指令”,在弹出的页面中单击复制登录指令。 在安装容器引擎的虚拟机中执行上一步复制的登录指令。 创建容器镜像组织。如果已创建组织则本步骤可以忽略。 登录SWR管理控制台。 选择左侧导航栏的“组织管理”,单击页面右上角的“创建组织”。 填写组织名称,单击“确定”。
提供了更实时高效的多样性算力,可支撑更丰富的大数据处理需求。产品内核及架构深度优化,综合性能是传统MapReduce模型的百倍以上,SLA保障99.95%可用性。 图1 DLI Serverless架构 与传统自建Hadoop集群相比,Serverless架构的DLI还具有以下优势:
桶目录中的数据被拆分成多个Part文件。对于相应的接收数据的桶的Sink的每个Subtask,每个桶将至少包含一个Part文件。将根据配置的滚动策略来创建其他Part文件。对于Row Formats默认的策略是根据Part文件大小进行滚动,需要指定文件打开状态最长时间的超时以及文件关闭后的非活动状态的超时时间。对于Bulk
单击“提交”完成弹性资源池的创建。 在弹性资源池的列表页,选择要操作的弹性资源池,单击操作列的“添加队列”。 配置队列的基础配置,具体参数信息如下。 表3 弹性资源池添加队列基础配置 参数名称 参数说明 配置样例 名称 弹性资源池添加的队列名称。 dli_queue_01 类型 选择创建的队列类型。
原生支持的。 对于数据分析来说Python是很自然的选择,而在大数据分析中PySpark无疑是不二选择。对于JVM语言系的程序,通常会把程序打成Jar包并依赖其他一些第三方的Jar,同样的Python程序也有依赖一些第三方库,尤其是基于PySpark的融合机器学习相关的大数据分析
Notebook是基于开源JupyterLab进行了深度优化的交互式数据分析挖掘模块,提供在线的开发和调试能力,用于编写和调测模型训练代码。完成DLI对接Notebook实例后,您可以基于Notebook提供的Web交互的开发环境同时完成代码的编写与作业的开发,使用Notebook灵活的进行数据分析与探索,本
GO语言深入之道 介绍几个Go语言及相关开源框架的插件机制 跟唐老师学习云网络 唐老师将自己对网络的理解分享给大家 智能客服 您好!我是有问必答知识渊博的的智能问答机器人,有问题欢迎随时求助哦! 社区求助 华为云社区是华为云用户的聚集地。这里有来自数据湖探索的技术牛人,为您解决技术难题。
操作场景 本节操作介绍创建Flink作业时,配置流应用实现高可靠性能的操作方法。 操作步骤 用户在消息通知服务(SMN)中提前创建一个“主题”,并将其指定的邮箱或者手机号添加至主题订阅中。此时指定的邮箱或者手机会收到请求订阅的通知,单击链接确认订阅即可。 图1 创建主题 图2 添加订阅
用户已上传到DLI资源管理系统的类型为jar或pyFile的程序包名。也支持指定OBS路径,例如:obs://桶名/包名。 className 是 String 批处理作业的Java/Spark主类。 queue 否 String 用于指定队列,填写已创建DLI的队列名。必须为通用类型的队列。 说明:
有的字段,会显示匹配上的所有分区信息。 注意事项 所要查看分区的表必须存在且是分区表,否则会出错。 示例 查看student表下面的所有的分区。 1 SHOW PARTITIONS student; 查看student表中dt='2010-10-10'的分区。 1 SHOW PARTITIONS
方法三:数据老化,按照业务逻辑分析大的维度表是否可以通过数据老化清理无效的维度数据从而降低数据规模。 数据量非常小的事实表 这种可以在预估很长一段时间的数据增长量的前提下使用非分区表预留稍宽裕一些的桶数来提升读写性能。 确认表内桶数 Hudi表的桶数设置,关系到表的性能,需要格外引起注意。
type' = '' ); 注意事项 该建表语法的数据输出目录为OBS时,OBS必须为并行文件系统,不能为OBS桶。 使用fileSystem时必须开启checkpoint,保证作业的一致性。 format.type为parquet时,支持的数据类型为string, boolean, tinyint
在下拉列表中选择要使用的队列。 选择Spark版本。在下拉列表中选择支持的Spark版本,推荐使用最新版本。 不建议长期混用不同版本的Spark/Flink引擎。 长期混用不同版本的Spark/Flink引擎会导致代码在新旧版本之间不兼容,影响作业的执行效率。 当作业依赖于特定版本的库或组件,
您还可以通过自定义镜像增强DLI的计算环境,通过下载DLI提供的基础镜像再按需制作自定义镜像,将作业运行需要的依赖(文件、jar包或者软件)、私有能力等内置到自定义镜像中,可以改变Spark作业和Flink作业的容器运行环境,增强作业的功能、性能。 例如,在自定义镜像中加入机器学习相关的Python
桶目录中的数据被拆分成多个Part文件。对于相应的接收数据的桶的Sink的每个Subtask,每个桶将至少包含一个Part文件。将根据配置的滚动策略来创建其他Part文件。对于Row Formats默认的策略是根据Part文件大小进行滚动,需要指定文件打开状态最长时间的超时以及文件关闭后的非活动状态的超时时间。对于Bulk
调度Clustering:使用可插拔的Clustering策略创建Clustering计划。 识别符合Clustering条件的文件:根据所选的Clustering策略,调度逻辑将识别符合Clustering条件的文件。 根据特定条件对符合Clustering条件的文件进行分组。每个组的数据大小应为t
用户已上传到DLI资源管理系统的类型为file的资源包名。也支持指定OBS路径,例如:obs://桶名/包名。 modules Array of Strings 依赖的系统资源模块名,具体模块名可通过查询组内资源包(废弃)接口查看。 DLI系统提供了用于执行跨源作业的依赖模块,各个不同的服务对应的模块列表如下:
proctime表示table1的proctime处理时间属性(计算列) 使用FOR SYSTEM_TIME AS OF table1.proctime表示当左边表的记录与右边的维表join时,只匹配当前处理时间维表所对应的的快照数据。 注意事项 仅支持带有处理时间的 temporal tables
流。它会将INSERT/UPDATE_AFTER数据作为正常的Kafka消息写入,并将DELETE数据以value为空的Kafka消息写入(表示对应 key 的消息被删除)。Flink将根据主键列的值对数据进行分区,从而保证主键上的消息有序,因此同一主键上的更新/删除消息将落在同一分区中。 前提条件
队列,队列关联到具体的作业和数据处理任务,是资源池中资源被实际使用和分配的基本单元,即队列是执行作业所需的具体的计算资源。 同一弹性资源池中,队列之间的计算资源支持共享。 通过合理设置队列的计算资源分配策略,可以提高计算资源利用率。 发布区域:以用户指南中的说明为准 DLI对接LakeFormation