检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
需要在训练开始前,修改llm_train/AscendSpeed/yi/3_training.sh文件,并添加--tokenizer-not-use-fast参数。修改后如图1所示。
需要在训练开始前,修改llm_train/AscendSpeed/yi/3_training.sh文件,并添加--tokenizer-not-use-fast参数。修改后如图1所示。
需要在训练开始前,修改llm_train/AscendSpeed/yi/3_training.sh文件,并添加--tokenizer-not-use-fast参数。修改后如图1所示。
需要在训练开始前,修改llm_train/AscendSpeed/yi/3_training.sh文件,并添加--tokenizer-not-use-fast参数。修改后如图1所示。
创建训练任务 调试代码 创建训练任务之前,建议先调试代码。
查询训练作业版本列表 功能介绍 根据作业ID查看指定的训练作业版本。 URI GET /v1/{project_id}/training-jobs/{job_id}/versions 参数说明如表1所示。
DeepSpeed的核心思想是在单个GPU上实现大规模模型并行训练,从而提高训练速度。DeepSpeed提供了一系列的优化技术,如ZeRO内存优化、分布式训练等,可以帮助用户更好地利用多个GPU进行训练 Accelerate是一种深度学习加速框架,主要针对分布式训练场景。
training_job_id 是 String 训练作业ID。获取方法请参见查询训练作业列表。 请求参数 表2 请求Body参数 参数 是否必选 参数类型 描述 tags 是 Array of TmsTagForDelete objects 要删除的标签列表。
训练中的权重转换说明 以 llama2-13b 举例,运行 0_pl_pretrain_13b.sh 脚本。脚本同样还会检查是否已经完成权重转换的过程。 如果已完成权重转换,则直接执行预训练任务。
python ${MA_JOB_DIR}/demo-code/train.py 如果训练启动脚本用的是sh文件,例如“main.sh”,则启动命令如下所示。
使用订阅算法创建训练作业 AI Gallery中提供了现成的算法,供用户使用,您可以直接订阅AI Gallery中的算法,快速创建训练作业,构建模型。 父主题: 使用ModelArts Standard训练模型
y_train, epochs=5) model.save(os.path.join(args.train_url, 'model')) 父主题: 准备模型训练代码
管理训练容器环境变量 什么是环境变量 本章节展示了训练容器环境中预置的环境变量,方便用户查看,主要包括以下类型。
如何提升训练效率,同时减少与OBS的交互? 场景描述 在使用ModelArts进行自定义深度学习训练时,训练数据通常存储在对象存储服务(OBS)中,且训练数据较大时(如200GB以上),每次都需要使用GPU资源池进行训练,且训练效率低。
训练tokenizer文件说明 在训练开始前,需要针对模型的tokenizer文件进行修改,不同模型的tokenizer文件修改内容如下,您可在创建的Notebook中对tokenizer文件进行编辑。
重建训练作业 当对创建的训练作业不满意时,您可以单击操作列的重建,重新创建训练作业。在重创训练作业页面,会自动填入上一次训练作业设置的参数,您仅需在原来的基础上进行修改即可重新创建训练作业。
父主题: 专属资源池创建训练作业
训练作业失败,如何使用开发环境调试训练代码? 在创建训练作业前,推荐您先使用ModelArts开发环境调试训练代码,避免代码迁移过程中的错误。 直接使用线上notebook环境调试请参考使用JupyterLab开发模型。
可以使用上一步3中的训练结果,也可以直接下载官方提供的预训练权重来使用。 具体训练命令如下。 python wav2lip_train.py --data_root ./lrs2_preprocessed/main/ --checkpoint_dir .
job_id 是 String 训练作业的id,可通过创建训练作业生成的训练作业对象查询,如"job_instance.job_id",或从查询训练作业列表的响应中获得。