检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
用户指南(旧版) 准备工作 RES操作流程 管理资源 全局配置 离线作业 近线作业 在线服务 服务总览信息 数据格式规范
数据源 RES的离线数据源包括什么? 如何上传数据至OBS 如何上传实时数据? 离线数据和近线实时数据如何配合使用? 数据探索是什么?近线实时数据如何在数据探索中的报告体现? 如何确定近线数据源导入实时数据成功? 实时数据能否立即应用到推荐场景?
智能场景 猜你喜欢的主要应用场景是什么? 关联推荐的主要应用场景是什么? 热门推荐的主要应用场景是什么?
实时日志 RES根据实时发送到DIS上的日志,进行数据计算和处理,更新用户的相关数据。用户发送到DIS上的数据具体如下: 实时行为日志 实时行为日志的作用包括: 更新用户的兴趣标签。 记录所选行为类型的历史记录。 更新用户的上下文信息。 召回候选集。 表1 实时行为日志字段描述 字段名
智能场景简介 针对对应的场景,由RES根据场景类型预置好对应的智能算法,为匹配的场景提供智能推荐服务。 智能场景功能说明 表1 功能说明 功能 说明 详细指导 猜你喜欢 推荐系统结合用户实时行为,推送更具针对性的内容,实现“千人千面”。 创建智能场景 关联推荐 基于大规模机器学习算法
离线数据源 调用RES之前,您需要准备3种基础数据包并上传至OBS,离线数据源目前支持CSV和JSON。具体数据包请参见表1 基础数据表。 表1 基础数据表 数据类型 表名 用户类数据 用户属性表 物品类数据 物品属性表 行为类数据 用户操作行为表 用户需要自己手工创建整理这些表并存储到
认证鉴权 调用接口有如下两种认证方式,您可以选择其中一种进行认证鉴权。 Token认证:通过Token认证通用请求。 AK/SK认证:通过AK(Access Key ID)/SK(Secret Access Key)加密调用请求。 Token认证 Token的有效期为24小时,需要使用一个
过滤规则 过滤规则用于配置候选集的过滤方式,使之不进入候选集。对于每个需要过滤的行为,生成用户具有该行为的物品的列表。再对同用户的每种行为的物品列表进行“与”或者“或”的关系,最终生成用户-物品过滤表。 表1 过滤规则参数说明 参数名称 说明 名称 自定义过滤规则名称。由中文、英文
构造请求 本节介绍REST API请求的组成,并以调用IAM服务的获取用户Token接口说明如何调用API,该API获取用户的Token,Token可以用于调用其他API时鉴权。 您还可以通过这个视频教程了解如何构造请求调用API:https://bbs.huaweicloud.com
召回策略 召回是指对大量的物品做初选,为每一个用户形成个性化侯选集。召回策略中内置了多种召回方式,用户可根据自己场景选择。召回策略对应流程请参见图1。 图1 召回策略 推荐系统支持的召回方式有: 基于特定行为热度推荐 基于综合行为热度推荐 基于物品的协同过滤推荐 基于用户的协同过滤推荐
过滤规则 过滤规则用于配置候选集的过滤方式,使之不进入候选集。过滤规则说明请参见图1。 图1 过滤规则 创建过滤规则 在“创建过滤规则”页面,用户可以对目标数据选择不同策略进行离线计算,得到合适的候选集。 创建过滤规则操作步骤如下: 在“离线作业”下,单击“过滤规则”页签,单击该页面做上方
提交效果评估任务 功能介绍 该接口用于提交推荐效果评估任务。 URI POST /v1/{project_id}/evaluate 参数说明请参见表1。 表1 URI参数说明 名称 是否必选 类型 说明 project_id 是 String 项目编号,用于资源隔离。获取方法请参见获取项目
近线召回 近线召回是基于用户实时的行为,分析用户短时间内(10秒周期)的兴趣爱好,推荐相关内容。 表9 近线召回参数说明 参数名称 说明 名称 近线召回名称,由中文、英文、数字、下划线、空格或者中划线组成,并且不能以空格开始和结束,长度为1~64个字符。
策略参数说明 RES支持多种策略,本章介绍召回策略(recall)、排序策略(sorting)。具体描述请参见表1 策略类型说明。 表1 策略类型说明 strategy_type name algorithm_type recall 特定行为热度推荐 SpecificBehavior
提交排序任务API 功能介绍 用于提交排序训练作业。 URI POST /v1/{project_id}/rank-job 参数说明请参见表1。 表1 URI参数说明 名称 是否必选 类型 说明 project_id 是 String 项目编号,用于资源隔离。获取方法请参见获取项目
逻辑斯蒂回归-LR 逻辑斯蒂回归算法是一种广义的线性回归分析模型,常用于数据挖掘、疾病自动诊断、经济预测等领域。逻辑斯蒂回归算法通过在线性回归的基础上叠加一个sigmoid激活函数将输出值映射到[0,1]之间,是机器学习领域里常用的二分类算法。单击查看逻辑斯蒂回归详情信息。
提交组合作业 功能介绍 该接口用于提交组合作业进行离线计算,并完成对应策略的候选集生成。 URI POST /v1/{project_id}/training 参数说明请参见表1-URI参数说明。 表1 URI参数说明 名称 是否必选 类型 说明 project_id 是 String
新建在线服务 功能介绍 新建在线服务元数据,新建成功之后可手动发布此服务。 调试 您可以在API Explorer中调试该接口。 URI POST /v2.0/{project_id}/workspaces/{workspace_id}/resources/{resource_id
修改训练作业参数 功能介绍 修改指定作业的元数据信息。 调试 您可以在API Explorer中调试该接口。 URI PUT /v2.0/{project_id}/workspaces/{workspace_id}/resources/{resource_id}/job-instance
查询在线服务详情 功能介绍 根据给定的workspace_id和resource_id及category查询在线服务。 调试 您可以在API Explorer中调试该接口。 URI GET /v2.0/{project_id}/workspaces/{workspace_id}/resources