检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
表示训练中所有机器一个step所处理的样本量。影响每一次训练迭代的时长。 TP 8 表示张量并行。 PP 1 表示流水线并行。一般此值与训练节点数相等,与权重转换时设置的值相等。 CP 1 表示context并行,默认为1。应用于训练长序列文本的模型。如果训练时SEQ_LEN超过32768长度,则推荐增加CP值(CP
表示训练中所有机器一个step所处理的样本量。影响每一次训练迭代的时长。 TP 8 表示张量并行。 PP 1 表示流水线并行。一般此值与训练节点数相等,与权重转换时设置的值相等。 CP 1 表示context并行,默认为1。应用于训练长序列文本的模型。如果训练时SEQ_LEN超过32768长度,则推荐增加CP值(CP
Gallery中,共享给其他用户使用。 “资产集市 > 算法”:共享了算法。 AI Gallery的算法模块支持算法的共享和订阅。在AI Gallery的“算法”中,可以查找您想要的算法,订阅满足业务需要的资产,最后推送至ModelArts控制台使用。也可以将个人开发的算法分享发布至AI Gallery中,共享给其他用户使用。
ModelArts是面向AI开发者的一站式开发平台,能够支撑开发者从数据到模型的全流程开发过程,包含数据处理、算法开发、模型训练、模型部署等操作。并且提供AI Gallery功能,能够在市场内与其他开发者分享数据、算法、模型等。为了能帮用户快速准备大量高质量的数据,ModelArts数据管理提供了全流程的数据准备、数据处理和数据标注能力。
lder_name criticism_sample_path 否 None 数据清洗负样例目录。目录应存放负样例图片文件,算法将这些图片为负样例,对算法输入中的数据进行过滤, 即保留与“criticism_sample_path”目录下图片相似度差距较大的数据。 建议该参数和“
表示训练中所有机器一个step所处理的样本量。影响每一次训练迭代的时长。 TP 8 表示张量并行。 PP 1 表示流水线并行。一般此值与训练节点数相等,与权重转换时设置的值相等。 CP 1 表示context并行,默认为1。应用于训练长序列文本的模型。如果训练时SEQ_LEN超过32768长度,则推荐增加CP值(CP
端到端运维ModelArts Standard推理服务方案 ModelArts推理服务的端到端运维覆盖了算法开发、服务运维和业务运行的整个AI流程。 方案概述 推理服务的端到端运维流程 算法开发阶段,先将业务AI数据存放到对象存储服务(OBS)中,接着通过ModelArts数据管理进行标
tensor-model-parallel-size 8 表示张量并行。 pipeline-model-parallel-size 1 表示流水线并行。一般此值与训练节点数相等,与权重转换时设置的值相等。 context_parallel_size 1 表示context并行,默认为1。应用于训练
使用VS Code创建并调试训练作业 由于AI开发者会使用VS Code工具开发算法或模型,为方便快速将本地代码提交到ModelArts的训练环境、贴近本地开发习惯地编写启动命令,ModelArts提供了一个训练作业场景下的IDE插件ModelArts-HuaweiCloud,用
过ECS上传至SFS Turbo。 前提条件 已创建SFS Turbo,如果未创建,请参考创建文件系统。 数据及算法已经上传至OBS,如果未上传,请参考上传数据和算法至OBS(首次使用时需要)。 ECS服务器和SFS的共享硬盘在相同的VPC或者对应VPC能够互联。 ECS服务器基础镜像需要用Ubuntu
训练网络迁移总结 确保算法在GPU训练时,持续稳定可收敛。避免在迁移过程中排查可能的算法问题,并且要有好的对比标杆。如果是NPU上全新开发的网络,请参考PyTorch迁移精度调优排查溢出和精度问题。 理解GPU和NPU的构造以及运行的差别,有助于在迁移过程中分析问题并发挥NPU的
在JupyterLab中使用MindInsight可视化作业 ModelArts支持在开发环境中开启MindInsight可视化工具。在开发环境中通过小数据集训练调试算法,主要目的是验证算法收敛性、检查是否有训练过程中的问题,方便用户调测。 MindInsight能可视化展现出训练过程中的标量、图像、计算图以及模型超
训练,在得到满意的模型后,可以将训练后得到的模型导入至模型管理,方便统一管理,同时支持将模型快速部署上线为服务。 约束与限制 针对使用订阅算法的训练作业,无需推理代码和配置文件,其生成的模型可直接导入ModelArts。 使用容器化部署,导入的元模型有大小限制,详情请参见导入模型对于镜像大小限制。
出现如下信息则表示校验通过。 Verification successful 步骤二:准备数据 准备算法 此处以订阅算法举例,您也可以自己准备算法。 从AI Gallery订阅一个图像分类的算法进入AI Gallery>资产集市>算法,搜索自动学习算法-图像分类。 单击算法右侧的“订阅”。
有经验的算法工程师花费一定精力和大量时间进行手动调优。ModelArts支持的超参搜索功能,在无需算法工程师介入的情况下,即可自动进行超参的调优,在速度和精度上超过人工调优。 ModelArts支持以下三种超参搜索算法: 贝叶斯优化(SMAC) TPE算法 模拟退火算法(Anneal)
数据留下的百分比。取值范围为0~1。例如0.9表示保留百分之90的原数据。 n_clusters auto auto 数据样本的种类数,默认为auto,即按照目录中图片个数取类别总数,可指定具体类别数,如 4 do_validation 否 True 是否进行数据校验,可填True或者False。表示数据去冗余前需要进行数据校验,否则只进行数据去重。
使用PyCharm Toolkit插件连接Notebook 由于AI开发者会使用PyCharm工具开发算法或模型,为方便快速将本地代码提交到ModelArts的训练环境,ModelArts提供了一个PyCharm插件工具PyCharm ToolKit,协助用户完成SSH远程连接N
数据集版本发布失败 出现此问题时,表示数据不满足数据管理模块的要求,导致数据集发布失败,无法执行自动学习的下一步流程。 请根据如下几个要求,检查您的数据,将不符合要求的数据排除后再重新启动自动学习的训练任务。 ModelArts.4710 OBS权限问题 ModelArts在跟O
Console中上传,当文件大于100个时,推荐使用工具,推荐OBS Browser+(win)、obsutil(linux)。上述例子为obsutil使用方法。 准备算法 main.py文件内容如下,并将其上传至OBS桶的demo文件夹中: import argparse import os
否 String 算法管理的算法id。 name 否 String 算法名称。无需填写。 subscription_id 否 String 订阅算法的订阅ID。应与item_version_id一同出现。 item_version_id 否 String 订阅算法的版本。应与subscription_id一同出现。