检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
}' 方式三 online_serving.py 发送请求(单图单轮对话) 由于多模态推理涉及图片的编解码,所以采用脚本方式调用服务API。脚本中需要配置的参数如表2脚本参数说明所示。 import base64 import requests import argparse # Function
码包中例如:scripts/llama2/0_pl_pretrain_13b.sh 的脚本,开始训练。 在训练中,程序会自动执行对数据集预处理、权重转换、执行训练等操作,具体可通过训练启动脚本说明和参数配置、训练的数据集预处理说明、训练的权重转换说明了解其中的操作。 训练完成后在SFS
ip_forward=1/g' /etc/sysctl.conf sysctl -p | grep net.ipv4.ip_forward 步骤二 制作自定义镜像 准备以下文件用于制作镜像。 下载并解压表1中的AscendCloud插件包,进入aigc_inference/torch_npu/webui/v1_9_0_RC/
码包中例如:scripts/llama2/0_pl_pretrain_13b.sh 的脚本,开始训练。 在训练中,程序会自动执行对数据集预处理、权重转换、执行训练等操作,具体可通过训练启动脚本说明和参数配置、训练的数据集预处理说明、训练的权重转换说明了解其中的操作。 训练完成后在SFS
码包中例如:scripts/llama2/0_pl_pretrain_13b.sh 的脚本,开始训练。 在训练中,程序会自动执行对数据集预处理、权重转换、执行训练等操作,具体可通过训练启动脚本说明和参数配置、训练的数据集预处理说明、训练的权重转换说明了解其中的操作。 训练完成后在SFS
aliveinterval-in-sshd-config-d 对于业务有影响的需要进行长链接保持的场景,尽量将日志写在单独的日志文件中,将脚本后台运行,例如: nohup train.sh > output.log 2>&1 & tail -f output.log 父主题: VS
AutoAWQ量化完成后,使用int32对int4的权重进行打包。昇腾上使用int8对权重进行打包,需要进行权重转换。 进入llm_tools/AutoAWQ代码目录下执行以下脚本: 执行时间预计10分钟。执行完成后会将权重路径下的原始权重替换成转换后的权重。如需保留之前权重格式,请在转换前备份。 python convert_awq_to_npu
安装后执行脚本:请输入脚本命令,命令中不能包含中文字符,需传入Base64转码后的脚本,转码后的字符数不能超过2048。脚本将在Kubernetes软件安装后执行,不影响Kubernetes软件安装。 说明: 暂不支持资源池中的存量节点池修改名称。 请不要在安装后执行脚本中使用re
}' 方式三 online_serving.py 发送请求(单图单轮对话) 由于多模态推理涉及图片的编解码,所以采用脚本方式调用服务API。脚本中需要配置的参数如表2脚本参数说明所示。 import base64 import requests import argparse # Function
如果训练作业使用的是预置框架: 在创建训练作业时,“创建方式”选择“自定义算法”,“启动方式”选择“预置框架”,代码目录中新增sleep.py并将此脚本作为“启动文件”。这样启动的作业将会持续运行60分钟。您可通过Cloud Shell进入容器进行调试。 sleep.py示例: import
AutoAWQ量化完成后,使用int32对int4的权重进行打包。昇腾上使用int8对权重进行打包,需要进行权重转换。 进入llm_tools/AutoAWQ代码目录下执行以下脚本: 执行时间预计10分钟。执行完成后会将权重路径下的原始权重替换成转换后的权重。如需保留之前权重格式,请在转换前备份。 python convert_awq_to_npu
AutoAWQ量化完成后,使用int32对int4的权重进行打包。昇腾上使用int8对权重进行打包,需要进行权重转换。 进入llm_tools代码目录下执行以下脚本: 执行时间预计10分钟。执行完成后会将权重路径下的原始权重替换成转换后的权重。如需保留之前权重格式,请在转换前备份。 python a
5-7b-sft-4096-lora-313T-20241028_164746-npu_info-0.txt,打印训练过程中AICORE利用率 执行性能比较脚本 进入test-benchmark目录执行命令: benchmark-cli performance <cfgs_yaml_file> --baseline
-h Step4 制作推理镜像 解压AscendCloud压缩包及该目录下的推理代码AscendCloud-LLM-6.3.908-xxx.zip和算子包AscendCloud-OPP-6.3.908-xxx.zip,并执行build_image.sh脚本制作推理镜像。安装过程需要连接互联网git
df -h 步骤四 制作推理镜像 解压AscendCloud压缩包及该目录下的推理代码AscendCloud-LLM-6.3.909-xxx.zip和算子包AscendCloud-OPP-6.3.909-xxx.zip,并执行build_image.sh脚本制作推理镜像。安装过程需要连接互联网git
AutoAWQ量化完成后,使用int32对int4的权重进行打包。昇腾上使用int8对权重进行打包,需要进行权重转换。 进入llm_tools代码目录下执行以下脚本: 执行时间预计10分钟。执行完成后会将权重路径下的原始权重替换成转换后的权重。如需保留之前权重格式,请在转换前备份。 python a
5-7b-sft-4096-lora-313T-20241028_164746-npu_info-0.txt,打印训练过程中AICORE利用率 执行性能比较脚本 进入test-benchmark目录执行命令: benchmark-cli performance <cfgs_yaml_file> --baseline
支持从OBS中导入数据。 开发环境 Notebook实例中的数据或代码文件可以存储在OBS中。 训练模型 训练作业使用的数据集、算法、运行脚本、训练输出产物、训练过程日志均可以存储在OBS中。 推理部署 训练作业结束后,其生成的模型可以存储在OBS中,创建模型时,从OBS中导入已有的模型文件。
包,在线转换会增加启动时间,可以提前对权重进行转换以减少启动时间,转换步骤如下: 进入llm_tools/AutoAWQ代码目录下执行以下脚本: 执行时间预计10分钟。执行完成后会将权重路径下的原始权重替换成转换后的权重。如需保留之前权重格式,请在转换前备份。 python convert_awq_to_npu
Gallery会基于资产和资源情况分析该任务是否支持设置“商品数量”,用户可以基于业务需要选择任务所需的资源卡数。 在“运行时长控制”选择是否指定运行时长。 不限时长:不限制作业的运行时长,AI Gallery工具链服务部署完成后将一直处于“运行中”。 指定时长:设置作业运行几小时后停止,当AI Gallery工