检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
transformers 的版本。 由默认 transformers==4.45.0 修改为:transformers==4.44.2 执行以下命令制作训练镜像。安装过程需要连接互联网git clone,请确保ECS可以访问公网 docker build -t <镜像名称>:<版本名称>
如果文件较小,可以将OBS上的数据保存成“.tar”包。训练开始时从OBS上下载到“/cache”目录,解压以后使用。 如果文件较大,可以保存成多个“.tar”包,在入口脚本中调用多进程进行并行解压数据。不建议把散文件保存到OBS上,这样会导致下载数据很慢。 在训练作业中,使用如下代码进行“.tar”包解压: import
sh,增加如下命令: pip install outlines==0.0.46 图1 修改build.sh 执行build_image.sh脚本制作推理镜像。安装过程需要连接互联网git clone,请确保机器环境可以访问公网。 sh build_image.sh --base-image=${base_image}
df -h 步骤四 制作推理镜像 解压AscendCloud压缩包及该目录下的推理代码AscendCloud-LLM-6.3.911-xxx.zip和算子包AscendCloud-OPP-6.3.911-xxx.zip,并执行build_image.sh脚本制作推理镜像。安装过程需要连接互联网git
transformers==4.45.0 修改为:transformers==4.44.2 以创建llama2-13b预训练作业为例,执行脚本0_pl_pretrain_13b.sh时,命令如下: cd /home/ma-user/work/llm_train/AscendSpeed;
transformers==4.47.0 修改为:transformers==4.44.2 以创建llama2-13b预训练作业为例,执行脚本0_pl_pretrain_13b.sh时,命令如下: cd /home/ma-user/work/llm_train/AscendFactory;
码包中例如:scripts/llama2/0_pl_pretrain_13b.sh 的脚本,开始训练。 在训练中,程序会自动执行对数据集预处理、权重转换、执行训练等操作,具体可通过训练启动脚本说明和参数配置、训练的数据集预处理说明、训练的权重转换说明了解其中的操作。 训练完成后在SFS
├── mmlu-exam, mmlu数据集 ├── ceval-exam, ceval数据集 ├── eval_test.py # 启动脚本,建立线程池发送请求,并汇总结果 ├── readme.md # 说明文档 ├── requirements.txt # 第三方依赖
ceval-exam, ceval数据集 ├── eval_test.py # 启动脚本,建立线程池发送请求,并汇总结果 ├── service_predict.py # 发送请求的服务 执行精度测试启动脚本eval_test.py,具体操作命令如下,可以根据参数说明修改参数。 python
/home/ma-user/ws/llm_train/AscendFactory/scripts_modellink 【必修改】ModelLink脚本相对或绝对路径,用于方便加载脚本 model_name_or_path /home/ma-user/work/llm_train/AscendFactory/model/llama2-70B
ost/work/runwayml/pytorch_models)。进入工作目录: cd /home_host/work 新建Python脚本文件“parse_models_shape.py”用于获取shape。其中,model_path是指上面下载的pytorch_models的路径。
${container_work_dir}/LLaVA 修改训练脚本模型路径(--model_name_or_path 模型路径)。 vim ./scripts/v1_5/pretrain_new.sh 运行训练脚本,默认是单机8卡。 bash ./scripts/v1_5/pretrain_new
transformers 的版本。 由默认 transformers==4.45.0 修改为:transformers==4.44.2 执行以下命令制作训练镜像。安装过程需要连接互联网git clone,请确保ECS可以访问公网 docker build -t <镜像名称>:<版本名称>
transformers 的版本。 由默认 transformers==4.45.0 修改为:transformers==4.44.2 执行以下命令制作训练镜像。安装过程需要连接互联网git clone,请确保ECS可以访问公网 docker build -t <镜像名称>:<版本名称>
path目录。参数grad_level可取值L0、L1、L2,级别越大导出的数据越详细。更多详细参数说明请参考参数说明。 监控逻辑插入训练脚本。 from msprobe.pytorch import PrecisionDebugger debugger = Precision
clone https://huggingface.co/Tencent-Hunyuan/HunyuanDiT-Diffusers 复制执行脚本 cd ${container_work_dir} cp ${container_work_dir}/aigc_inference/tor
json 如果使用其他数据集,需要先执行步骤二:非sharegpt格式数据集转换(可选)转换数据集格式为sharegpt格式。 执行如下脚本将sharegpt格式数据生成为训练data数据集。 python allocation.py \ --outdir outdir0/sharegpt_0_99_mufp16
}' 方式三 online_serving.py 发送请求(单图单轮对话) 由于多模态推理涉及图片的编解码,所以采用脚本方式调用服务API。脚本中需要配置的参数如表2脚本参数说明所示。 import base64 import requests import argparse # Function
py”中将“project_dir”添加到“sys.path”中,再导入: import os import sys # __file__为获取当前执行脚本main.py的绝对路径 # os.path.dirname(__file__)获取main.py的父目录,即project_dir的绝对路径
aliveinterval-in-sshd-config-d 对于业务有影响的需要进行长链接保持的场景,尽量将日志写在单独的日志文件中,将脚本后台运行,例如: nohup train.sh > output.log 2>&1 & tail -f output.log 父主题: VS