检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
关联推荐的主要应用场景是什么? 关联推荐主要应用于固定的物品的关联推荐,根据已关联的物品对相关的内容和行为进行挖掘,网状匹配相关联的物品,进行有关联度的推荐。 父主题: 智能场景
猜你喜欢的主要应用场景是什么? 猜你喜欢主要应用于浏览意向不明确,如首页推荐等,RES能够根据用户的长短期行为表现出来的兴趣进行学习与训练,结合长短期兴趣进行个性化推荐。 父主题: 智能场景
热门推荐的主要应用场景是什么? 热门推荐只要适用于首页、热点类场景,满足流行度统计,有效吸引新用户。 父主题: 智能场景
实时数据能否立即应用到推荐场景? 需要确认关联的召回策略,近线召回可以,离线召回不可以。离线召回需要重新执行。 父主题: 数据源
图2 RES媒资推荐 RES+房产应用场景 场景描述 推荐系统助力房产企业APP实现首页推荐、详情推荐和个人中心推荐。 场景优势: 支持基于经纬度的向量召回,根据地理位置召回高匹配度的附近房源。 特征标签网状匹配。
创建智能场景 猜你喜欢主要应用于浏览意向不明确,如首页推荐等,RES能够根据用户的长短期行为表现出来的兴趣进行学习与训练,结合长短期兴趣进行个性化推荐。
什么是推荐系统 推荐系统(Recommender System,简称RES) ,基于华为大数据和人工智能技术,提供推荐平台和算法服务,并帮助企业构建个性化推荐应用,助力提升网站/APP的点击率、留存率和用户体验。
云容器引擎-成长地图 | 华为云 推荐系统 推荐系统(Recommender System),基于华为大数据和人工智能技术,提供推荐平台和算法服务,并帮助企业构建个性化推荐应用,助力提升网站/APP的点击率、留存率和用户体验。
智能场景 猜你喜欢的主要应用场景是什么? 关联推荐的主要应用场景是什么? 热门推荐的主要应用场景是什么?
背景信息 绑定资源之后,将该资源应用于RES的作业训练及在线作业获取推荐结果。 解绑资源完成资源释放,已经解绑的资源不再应用于RES的相关计算。 已开通计算引擎DLI、存储平台CloudTable、数据接入资源DIS相关服务。
DeepFM DeepFM,结合了FM和深度神经网络对于特征表达的学习,同时学习高阶和低阶特征组合,从而达到准确地特征组合学习,进行精准推荐。
创建智能场景 关联推荐 基于大规模机器学习算法,深度挖掘物品之间的联系,自动匹配精准内容。 热门推荐 基于多维度数据分析,自动匹配所覆盖用户群体更关心的内容进行重点展示。 获取推荐结果 根据不同的功能模块,获取对应的推荐结果。 获取推荐结果 父主题: 智能场景
在线服务 在线服务应用于做线上推荐,每个服务之间是独立的。即根据不同的离线计算得到的候选集以及相关参数,提供不同的推荐服务。 推荐引擎 以推荐为业务逻辑的引擎,即系统根据配置生成召回集作为起点,输出推荐结果集为终点的引擎。
深度网络因子分解机,结合了因子分解机和深度神经网络对于特征表达的学习,同时学习高阶和低阶特征组合,从而达到准确地特征组合学习,进行精准推荐。DEEPFM算法参数请参见深度网络因子分解机。
创建在线服务 在线服务负责分析结果的应用过程,泛指部署线上服务后提供的推理服务,对外提供API接口。在推荐系统中,包含推荐引擎、文本标签、排序三种在线服务,具体说明如下: 推荐引擎 推荐引擎用于对RES召回策略跑出来的候选集结果进行融合过滤和排序。
深度网络因子分解机-DeepFM 深度网络因子分解机,结合了因子分解机和深度神经网络对于特征表达的学习,同时学习高阶和低阶特征组合,从而达到准确地特征组合学习,进行精准推荐。单击查看深度网络因子分解机详细信息。
“应用于”:该过滤规则应用于所选的候选集,默认会作用于所有在召回池中选中的所有路候选集。 过滤(白名单) 属性值保留 指定定制化用户属性、物品属性和应用于某个召回策略属性过滤规则,保留该选定的属性值,使之进入候选集。例如,对于保留一线城市的用户物品信息物品。单击增加属性值保留。
推荐系统(Recommender System,简称RES)基于华为大数据和人工智能技术,提供推荐平台和算法服务,并帮助企业构建个性化推荐应用,助力提升网站/APP的点击率、留存率和用户体验。 父主题: 基础问题
基于华为大数据和人工智能技术,提供推荐平台和算法服务,并帮助企业构建个性化推荐应用,助力提升网站/APP的点击率、留存率和用户体验。 您可以使用本文档提供推荐系统服务API的描述、语法、参数说明及样例等内容,进行相关操作,例如推荐系统的具体接口使用说明。
主要应用为猜你喜欢、关联推荐、热门推荐。 功能优势: 多维度管理,支持运营规则设置,一站式推荐平台。 自动挖掘特征,采用AUTOML完成特征的自动挖掘和组合,提高特征选择效率。 高适用性,多种模板选择,适用多个应用场景。