检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
失败的风险。建议训练代码目录大小小于或等于50MB。 代码目录路径中的启动文件 代码目录路径中的启动文件作为训练启动的入口,当前只支持python格式。预置框架启动文件的启动流程说明请参见预置框架启动文件的启动流程说明。 训练输入路径参数 训练数据需上传至OBS桶或者存储至数据集
arch String 服务器镜像架构类型。 ARM X86 image_id String 服务器镜像ID。 name String 服务器镜像名称。 server_type String 服务器类型。枚举值如下: BMS:裸金属服务器 ECS:弹性云服务器 请求示例 DELETE
arch String 服务器镜像架构类型。 ARM X86 image_id String 服务器镜像ID。 name String 服务器镜像名称。 server_type String 服务器类型。枚举值如下: BMS:裸金属服务器 ECS:弹性云服务器 请求示例 PUT h
查看作业详情 如何查看训练作业资源占用情况? 如何访问训练作业的后台? 两个训练作业的模型都保存在容器相同的目录下是否有冲突? 训练输出的日志只保留3位有效数字,是否支持更改loss值? 训练好的模型是否可以下载或迁移到其他账号?如何获取下载路径? 父主题: Standard训练作业
install在Notebook或Terminal中安装依赖包。 在Notebook中安装 在总览页面进入CodeLab。 在“Notebook”区域下,新建一个ipynb文件。 在新建的Notobook中,在代码输入栏输入如下命令。 !pip install xxx 在Terminal中安装 在Terminal里激活需要的anaconda
SFT全参微调数据处理 SFT全参微调(Supervised Fine-Tuning)前需要对数据集进行预处理,转化为.bin和.idx格式文件,以满足训练要求。 下载数据 SFT全参微调涉及的数据下载地址:https://huggingface.co/datasets/tatsu
模型训练高可靠性 训练作业容错检查 训练日志失败分析 训练作业卡死检测 训练作业重调度 设置断点续训练 设置无条件自动重启 设置训练故障优雅退出 父主题: 使用ModelArts Standard训练模型
执行训练启动命令后,等待模型载入,当出现“training”关键字时,表示开始训练。训练过程中,训练日志会在最后的Rank节点打印。 图1 等待模型载入 更多查看训练日志和性能操作,请参考查看日志和性能章节。 如果需要使用断点续训练能力,请参考断点续训练章节修改训练脚本。 父主题: 预训练
主流开源大模型基于DevServer适配LlamaFactory PyTorch NPU训练指导(6.3.907) 场景介绍 准备工作 指令监督微调训练任务 查看日志和性能 训练脚本说明 附录:指令微调训练常见问题 父主题: LLM大语言模型训练推理
件内容,“文件类型”)}”,参数填写可以参考表1。 表1 files参数说明 参数 是否必填 说明 请求参数 是 在线服务输入参数名称。 文件路径 否 上传文件的路径。 文件内容 是 上传文件的内容。 文件类型 否 上传文件类型。当前支持以下类型: txt类型:text/plain
SFT全参微调数据处理 SFT全参微调(SFT fine-tuning)前需要对数据集进行预处理,转化为.bin和.idx格式文件,以满足训练要求。 下载数据 SFT全参微调涉及的数据下载地址:https://huggingface.co/datasets/silk-road/a
训练作业 创建训练作业 训练作业调测 查询训练作业列表 查询训练作业详情 更新训练作业描述 删除训练作业 终止训练作业 查询训练日志 查询训练作业的运行指标 父主题: 训练管理
主流开源大模型基于Standard+OBS适配PyTorch NPU训练指导(6.3.909) 场景介绍 准备工作 预训练 SFT全参微调训练 LoRA微调训练 查看日志和性能 训练脚本说明 常见错误原因和解决方法 父主题: LLM大语言模型训练推理
从本地上传数据到ModelArts数据集 文件型数据来源 文件型数据集支持从两种数据源导入数据:“OBS”和“本地上传”。导入后,导入目录下的数据会复制至数据集的数据源路径下。 OBS:又分为从OBS目录或从Manifest文件两种导入方式,需要将导入的数据或Manifest文件提前存储至OBS目录中。
需要部署的卡数。也能同时降低首token时延和增量推理时延。支持SmoothQuant(W8A8)量化的模型列表请参见支持的模型列表和权重文件。 本章节介绍如何在Notebook使用SmoothQuant量化工具实现推理量化。 SmoothQuant量化工具使用到的脚本存放在代码包AscendCloud-LLM-x
需要部署的卡数。也能同时降低首token时延和增量推理时延。支持SmoothQuant(W8A8)量化的模型列表请参见支持的模型列表和权重文件。 本章节介绍如何使用SmoothQuant量化工具实现推理量化。 SmoothQuant量化工具使用到的脚本存放在代码包AscendCloud-LLM-x
主流开源大模型基于Standard+OBS+SFS适配PyTorch NPU训练指导(6.3.907) 场景介绍 准备工作 预训练 SFT全参微调训练 LoRA微调训练 查看日志和性能 训练脚本说明 常见错误原因和解决方法 父主题: LLM大语言模型训练推理
主流开源大模型基于Standard+OBS+SFS适配PyTorch NPU训练指导(6.3.908) 场景介绍 准备工作 预训练 SFT全参微调训练 LoRA微调训练 查看日志和性能 训练脚本说明 常见错误原因和解决方法 父主题: LLM大语言模型训练推理
modelarts:trainJob:list - √ √ 训练作业日志预览 GET /v2/{project_id}/training-jobs/{training_job_id}/tasks/{task_id}/logs/preview - - √ √ 训练作业日志下载 GET /v2/{project_
模型路径。脚本里写到datasets路径即可。 run_lora_sdxl中的vae路径要准确写到sdxl_vae.safetensors文件路径。 vim run_lora.sh vim run_lora_sdxl.sh 启动SD1.5 LoRA训练服务 使用ma-user用户执行如下命令运行训练脚本。