检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
训练容器独享节点规格的可使用资源。 多机场景下(即选择的实例数大于1),ModelArts会优先在相同节点上启动一个parameter server(以下简称ps)和一个worker,平台会自动一比一分配ps与worker任务。例如,双机场景会分配2个ps和2个worker任务,并为启动文件额外注入如下参数。
否 Array of ResourceRequirement objects 算法资源约束。可不设置。设置后,在算法使用于训练作业时,控制台会过滤可用的公共资源池。 advanced_config 否 AlgorithmAdvancedConfig object 算法高级策略: auto_search
nfs/model/llama_7b,两者要完全一致。 --request-rate:请求频率,支持多个,如 0.1 1 2。实际测试时,会根据request-rate为均值的指数分布来发送请求以模拟真实业务场景。 --num-prompts:某个频率下请求数,支持多个,如 10
--tokenizer:tokenizer路径,可以是huggingface的权重路径 --request-rate:请求频率,支持多个,如 0.1 1 2。实际测试时,会根据request-rate为均值的指数分布来发送请求以模拟真实业务场景。 --num-prompts:某个频率下请求数,支持多个,如 10
py”复制到该目录下,名称改为“pipeline_onnx_stable_diffusion_img2img_mslite.py”,以便与源文件名称区分。但是这样也会导致无法正确找到源码中相对路径下的依赖,需要将对于diffusers包内的相对路径修改为绝对路径的形式。 图1 代码依赖修改前与修改后 将推
从0制作自定义镜像用于创建训练作业(Pytorch+Ascend) 本章节介绍如何从0到1制作镜像,并使用该镜像在ModelArts平台上进行训练。镜像中使用的AI引擎是PyTorch,训练使用的资源是专属资源池的Ascend芯片。 准备工作 准备一套可以连接外部网络,装有Linux系统并安装18
algorithm_type String 自动标注的算法类型。可选值如下: fast:快速型,仅使用已标注样本进行训练 accurate:准确型,除已标注样本外,会额外使用未标注的样本做半监督训练 ambiguity Boolean 是否通过图片模糊度来聚类。 annotation_output String
内置属性:图像尺寸(图像的宽度、高度、深度),类型为List<Integer>。列表中的第一个数字为宽度(像素),第二个数字为高度(像素),第三个数字为深度(深度可以没有,默认为3),如[100,200,3]和[100,200]均合法。 说明:只有当样本的标签列表包含物体检测标签时,此字段必选。 请求示例 分页查询团队标注任务下的样本列表
当参数值>=TRAIN_ITERS时,生成模型仅保存经过TRAIN_ITERS次训练后的最后一个版本。 当参数值<TRAIN_ITERS时,生成模型会每经过SAVE_INTERVAL次,保存一次模型版本。 模型版本保存次数=TRAIN_ITERS//SAVE_INTERVAL+1 SAVE_TOTAL_LIMIT
当参数值>=TRAIN_ITERS时,生成模型仅保存经过TRAIN_ITERS次训练后的最后一个版本。 当参数值<TRAIN_ITERS时,生成模型会每经过SAVE_INTERVAL次,保存一次模型版本。 模型版本保存次数=TRAIN_ITERS//SAVE_INTERVAL+1 SAVE_TOTAL_LIMIT
内置属性:图像尺寸(图像的宽度、高度、深度),类型为List<Integer>。列表中的第一个数字为宽度(像素),第二个数字为高度(像素),第三个数字为深度(深度可以没有,默认为3),如[100,200,3]和[100,200]均合法。 说明:只有当样本的标签列表包含物体检测标签时,此字段必选。 请求示例 分页查询样本列表
表示训练间隔多少step,则会保存一次权重文件。 SEED 1234 随机种子数。每次数据采样时,保持一致。 CONVERT_MG2HF True 表示训练完成的权重文件会自动转换为Hugging Face格式权重。若不需要自动转换,则删除该环境变量。 对于ChatGLMv3-6B、GLMv4-9B和Qwen系
当参数值>=TRAIN_ITERS时,生成模型仅保存经过TRAIN_ITERS次训练后的最后一个版本。 当参数值<TRAIN_ITERS时,生成模型会每经过SAVE_INTERVAL次,保存一次模型版本。 模型版本保存次数=TRAIN_ITERS//SAVE_INTERVAL+1 SAVE_TOTAL_LIMIT
获取路径:Support-E,在此路径中查找下载ModelArts 6.3.911 版本。 说明: 如果上述软件获取路径打开后未显示相应的软件信息,说明您没有下载权限,请联系您所在企业的华为方技术支持下载获取。 支持的模型列表和权重文件 本方案支持vLLM的v0.6.3版本。不同vLLM版本支持的模型列表有差异,具体如表3所示。
示例:从 0 到 1 制作自定义镜像并用于训练(Pytorch+CPU/GPU) 本章节介绍如何从0到1制作镜像,并使用该镜像在ModelArts平台上进行训练。镜像中使用的AI引擎是PyTorch,训练使用的资源是CPU或GPU。 本实践教程仅适用于新版训练作业。 场景描述 本示例使用Linux
表示训练间隔多少step,则会保存一次权重文件。 SEED 1234 随机种子数。每次数据采样时,保持一致。 CONVERT_MG2HF True 表示训练完成的权重文件会自动转换为Hugging Face格式权重。若不需要自动转换,则删除该环境变量。 对于ChatGLMv3-6B、GLMv4-9B和Qwen系
访问OBS桶。具体请参见查看OBS桶与ModelArts是否在同一个区域。 请确认操作Notebook的账号有权限读取OBS桶中的数据。如没有权限,请参见在Notebook中,如何访问其他账号的OBS桶?。 父主题: 文件上传下载
表示训练间隔多少step,则会保存一次权重文件。 SEED 1234 随机种子数。每次数据采样时,保持一致。 CONVERT_MG2HF True 表示训练完成的权重文件会自动转换为Hugging Face格式权重。若不需要自动转换,则删除该环境变量。 对于Yi系列模型、ChatGLMv3-6B和Qwen系列模
从0制作自定义镜像用于创建训练作业(PyTorch+CPU/GPU) 本章节介绍如何从0到1制作镜像,并使用该镜像在ModelArts平台上进行训练。镜像中使用的AI引擎是PyTorch,训练使用的资源是CPU或GPU。 本实践教程仅适用于新版训练作业。 场景描述 本示例使用Linux
从0制作自定义镜像用于创建训练作业(Tensorflow+GPU) 本章节介绍如何从0到1制作镜像,并使用该镜像在ModelArts平台上进行训练。镜像中使用的AI引擎是Tensorflow,训练使用的资源是GPU。 本实践教程仅适用于新版训练作业。 场景描述 本示例使用Linux