检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
2xlarge.4镜像 EulerOS 2.9 64bit with ARM for Tenant 20230728 base 2.9.15 公网IP:100.85.220.207 root密码:/ CPU架构:aarch64(登录设备,执行arch命令查看) worker bms-panguXXXX
若您的无监督文档没有任何结构化信息,可以将有监督的问题设置为“以下是一篇文章的第一个句子:xxx/第一段落:xxx。请根据以上的句子/段落,续写为一段不少于xx个字的文本。”,再将回答设置为符合要求的段落。 扩写:根据段落的其中一句或者一段续写成完整的段落。 若您的无监督文档没有任何结构
和密码等信息。 区域(Region) 从地理位置和网络时延维度划分,同一个Region内共享弹性计算、块存储、对象存储、VPC网络、弹性公网IP、镜像等公共服务。Region分为通用Region和专属Region,通用Region指面向公共租户提供通用云服务的Region;专属R
训练参数设置:您可以通过绘制Loss曲线查询来确认模型的训练过程是否出现了问题,这种情况大概率是由于训练参数设置的不合理而导致了欠拟合,模型没有学到任何知识。请检查训练参数中的 “训练轮次”或“学习率”等参数的设置,适当增大“训练轮次”的值,或根据实际情况调整“学习率”的值,帮助模型更好收敛。
专项资金使用情况的评估,加强对建设过程的监管和评估,节约专项资金,杜绝资源的浪费和管理不善的情况。在使用福田区社会建设专项资金中,如何防止遭到挤占、占用和挪用专项资金的情况?在使用福田区社会建设专项资金的过程中,应合法合规,按照相关规定经审批后使用并保存票据。同时,应实行专款专用
数据质量:请检查训练数据中是否存在文本重复的异常数据,可以通过规则进行加工。 训练参数设置:若数据质量存在问题,且因训练参数设置的不合理而导致过拟合,该现象会更加明显。请检查训练参数中的“训练轮次”或“学习率”等参数的设置,适当降低这些参数的值,降低过拟合的风险。 为什么微调后的模型,回答中会出现乱码?
小越小,内存消耗越小,但是收敛速度会变慢,同时模型更容易受到数据噪声的影响,从而导致模型收敛困难。 您可根据数据和模型的规模进行调整。一般来说,如果数据量级很小或模型参数规模很大,可以使用较小的批量大小,反之可以使用较大的批量大小。 如果您没有专业的调优经验,可以优先使用平台提供
设置完成后,会显示出各变量以及默认的权重。您可以基于变量的重要情况调整权重。 海表高度 海表面高度(m)的权重设置。训练数据设置完成后,会显示出各变量以及默认的权重。您可以基于变量的重要情况调整权重。 海表面气压 海表面气压 (Pa)的权重设置。训练数据设置完成后,会显示出各变量
可以先创建一个IAM用户,并设置该用户在盘古平台中的角色,控制对资源的使用范围。 IAM权限 默认情况下,管理员创建的IAM用户(子用户)没有任何权限,需要将其加入用户组,并对用户组授权,才能使得用户组中的用户获得对应的权限。授权后,用户就可以基于被授予的权限对云服务进行操作。
height:必选字段,图像的高度。 depth:必选字段,图像的通道数。 segmented 是 表示是否用于分割,取值为0或1。0表示没有分割标注,1表示有分割标注。 object 是 目标对象信息,包括被标注物体的类别、姿态、是否被截断、是否识别困难以及边界框信息,多个物体标注会有多个object体。
小越小,内存消耗越小,但是收敛速度会变慢,同时模型更容易受到数据噪声的影响,从而导致模型收敛困难。 您可根据数据和模型的规模进行调整。一般来说,如果数据量级很小或模型参数规模很大,可以使用较小的批量大小,反之可以使用较大的批量大小。 如果您没有专业的调优经验,可以优先使用平台提供
每个起报时间需为输入数据中存在的时间点。 表面变量 支持选择推理结果输出的表面变量,包括10m u风、10m v风、2米温度、海平面气压,没有选择的变量推理结果将不输出。 高空变量 设置高空变量参数,包括:4个表面层特征(10m u风、10m v风、2米温度、海平面气压),13高
渐得出结论。 例如,在数学问题中,可以通过展示从问题解析到公式应用再到最终解答的完整过程,帮助模型理解问题解决的逻辑。 引导模型分析:如果没有直接的示例或现有示例不适用,可以引导模型首先进行“详细分析”,然后再给出答案。这意味着在提示词中明确要求模型逐步分析问题的各个方面,帮助模
Rate)是模型训练中最重要的超参数之一,它直接影响模型的收敛速度和最终性能: 学习率过高,会导致损失在训练初期快速下降,但随后波动较大,甚至出现NaN(梯度爆炸)的问题。 学习率过低,会导致损失下降非常缓慢,训练过程耗时较长,模型可能陷入局部最优等问题。 科学计算大模型的学习率调优策略如下:
成token,然后根据模型的概率分布进行采样或计算。 例如,在英文中,有些组合单词会根据语义拆分,如overweight会被设计为2个token:“over”、“weight”。在中文中,有些汉字会根据语义被整合,如“等于”、“王者荣耀”。 在盘古大模型中,以N1系列模型为例,盘古1token≈0
较低的温度。 请注意,温度和核采样的作用相近,在实际使用中,为了更好观察是哪个参数对结果造成的影响,因此不建议同时调整这两个参数。 如果您没有专业的调优经验,可以优先使用建议,再结合推理的效果动态调整。 核采样(top_p) 0~1 1 核采样主要用于控制模型输出的多样性。核采样
时也可能会降低模型的拟合能力。取值范围:[0,1)。 特征删除概率 用于定义特征删除机制中的删除概率。特征删除(也称为特征丢弃)是另一种正则化技术,它在训练过程中随机删除一部分的输入特征,以防止模型过拟合。这个值越大,删除的特征越多,模型的正则化效果越强,但同时也可能会降低模型的拟合能力。取值范围:[0
使用较低的温度。 请注意,温度和核采样的作用相近,在实际使用中,为了更好观察是哪个参数对结果造成的影响,不建议同时调整这两个参数。 如果您没有专业的调优经验,可以优先使用建议,再结合推理的效果动态调整。 核采样(top_p) 0~1 1 核采样主要用于控制模型输出的多样性。核采样
报的准确性。 ACC的计算涉及到预报值、观测值和气候平均值的差异,其值范围从-1到+1,值越接近+1表示预报与观测的一致性越好,值为0表示没有相关性,而负值则表示反向相关。 RQE 衡量预测值与真实值之间差距的指标。它是所有单个观测的相对误差的平方和。 该值越小,代表模型性能越好。
在反问时需要指明“上面的xxx”。例如:“为什么你认为上面的xxx是xxx类别?为什么上面的xxx不是xxx类别?”,否则模型会认为用户反问是个新问题,而非多轮并回复“您并没有给我xxx问题,请给我具体的xxx问题,以便我更好地解答。” 复述任务要求 可以让模型复述prompt中的要求,考察模型是否理解。