检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
如果是多个节点复制不同步,并且没有barrier的话导致的超时,可以在复制数据之前,先进行torch.distributed.init_process_group(),然后再根据local_rank()==0去复制数据,之后再调用torch.distributed.barrier()等待所有rank完成复制。具体可参考如下代码:
Studio左侧导航栏中,选择“模型部署”进入服务列表。 选择“我的服务”页签。 选择模型服务,单击操作列的“更多 > 扩缩容”,进入扩缩容页面。 在扩缩容页面,根据业务需要增删模型服务的实例数,配置完成后,单击“确认”提交扩缩容任务。 在我的服务列表,单击服务名称,进入服务详情页,可以查看修改后的实例数是否生效。
选择数据集所在的区域,以控制台实际可选值为准。 选择数据集 从下拉列表中选择当前区域中需要发布的目标数据集。 选择版本 选择目标数据集需要发布的版本。 许可证类型 根据业务需求和数据集类型选择合适的许可证类型。 单击许可证类型后面的可以查看许可证详情。 谁可以看 设置此数据集的公开权限。可选值有: “公开”:表示所有使用AI
在线服务预测报错ModelArts.4503 当使用推理的镜像并且出现MR.XXXX类型的错误时,表示已进入模型服务,一般是模型推理代码编写有问题。 请根据构建日志报错信息,定位服务预测失败原因,修改模型推理代码后,重新导入模型进行预测。 经典案例:在线服务预测报错MR.0105 出现其他情况,优先检查客户端和外部网络是否有问题。
用。 开发者可以通过浏览器入口以Notebook方式访问,也可以通过VSCode远程开发的模式直接接入到云上环境中完成迁移开发与调测,最终生成适配昇腾的推理应用。 当前支持以下两种迁移环境搭建方式: ModelArts Standard:在Notebook中,使用预置镜像进行。 ModelArts
383bbd54bc621086e05aa1b030d8d4d5635b25e6 pip install -e . 执行如下精度测试命令,可以根据参数说明修改参数。 lm_eval --model vllm --model_args pretrained=${vllm_path}
开”,自动进入JupyterLab界面,打开Terminal。 在Notebook中制作自定义镜像 首先配置鉴权信息,指定profile,根据提示输入账号、用户名及密码。鉴权更多信息请查看配置登录信息。 ma-cli configure --auth PWD -P xxx 执行env|grep
用户组。 创建子用户账号并加入用户组。在IAM左侧菜单栏中,选择“用户”,单击右上角“创建用户”,在“创建用户”页面中,添加多个用户。 请根据界面提示,填写必选参数,然后单击“下一步”。 在“加入用户组”步骤中,选择“用户组02”,然后单击“创建用户”。 系统将逐步创建好前面设置的2个用户。
必须修改。训练时指定的输入数据路径。请根据实际规划修改。 ORIGINAL_HF_WEIGHT /home/ma-user/ws/llm_train/AscendSpeed/model/llama2-70B 必须修改。加载tokenizer与Hugging Face权重时,对应的存放地址。请根据实际规划修改。
如果cuda相关运算设置的卡ID号在所选规格范围内,但是依旧出现了上述报错。可能是该资源节点中存在GPU卡损坏的情况,导致实际能检测到的卡少于所选规格。 处理方法 建议直接根据系统分卡情况下传进去的CUDA_VISIBLE_DEVICES去设置,不用手动指定默认的。 如果发现资源节点中存在GPU卡损坏,请联系技术支持处理。
下载,即“data”文件是否存在。 cd /home/ma-user/work ls 在“Terminal”环境进行编译,具体编译方式请您根据业务需求进行。 将编译结果使用Moxing复制至OBS中 。代码示例如下: import moxing as mox mox.file.m
必须修改。训练时指定的输入数据路径。请根据实际规划修改。 ORIGINAL_HF_WEIGHT /home/ma-user/ws/model/llama2-70B 必须修改。加载tokenizer与Hugging Face权重时,对应的存放地址。请根据实际规划修改。 SHELL_FOLDER
登录ModelArts管理控制台,在左侧导航栏选择“权限管理”,进入“权限管理”页面。 单击“添加授权”,进入“访问授权”配置页面,根据参数说明进行配置。 “授权对象类型”:根据需要选择"IAM子用户"、"联邦用户"、"委托用户"、"所有用户" “授权对象”:选择授权对象 “委托选择”:新增委托
对于昇腾硬件的适配与支持。对AI有使用诉求的企业、NLP领域开发者,可以借助这个库,便捷地使用昇腾算力进行自然语言理解(NLU)和自然语言生成(NLG)任务的SOTA模型开发与应用。 支持的模型结构框架 AI Gallery的Transformers库支持的开源模型结构框架如表1所示。
请注意,数据文件大小不等于内存占用大小,需仔细评估内存使用情况。 退出码139 请排查安装包的版本,可能存在包冲突的问题。 排查办法 根据错误信息判断,报错原因来源于用户代码。 您可以通过以下两种方式排查: 线上环境调试代码(仅适用于非分布式代码) 在开发环境(notebook)申请相同规格的开发环境实例。
供参考。针对分布式作业,只会显示当前节点的一个分析结果,作业的失败需要综合各个节点的失败原因做一个综合判断。 常见训练问题定位思路如下: 根据日志界面提示中提供的分析建议解决。 参考案例解决:会提供当前故障对应的指导文档链接,请参照文档中的解决方案修复问题。 重建作业:建议重建作业进行重试,大概率能修复问题。
已创建ModelArts在线服务。 已在云监控服务创建ModelArts监控服务。登录“云监控服务”控制台,在“自定义监控”页面,根据界面提示创建ModelArts监控服务。 设置告警规则有多种方式。您可以根据实际应用场景,选择设置告警规则的方式。 对ModelArts服务设置告警规则 对单个服务设置告警规则
但有时候会出现读取速度变慢的现象,并且SFS提示报错"rpc_check_timeout:939 callbacks suppressed"。 原因分析 根据SFS客户端日志分析出现问题的时间点发现,SFS盘连接的客户端个数较多,在问题的时间点并发读取数据,I/O超高;当前SFS服务端的机制是:
(后面称模板机)的实例ID信息,如果制作镜像不清理“/var/lib/cloud/*”就会导致用该镜像再重装模板机时,cloud-init根据残留目录(含实例ID)判断已经执行过一次,进而不会再执行user-data里面的脚本。 而使用该镜像的服务器B和C,由于实例ID信息和镜像
benchmark_utils.py # 抽离的工具集 ├── generate_datasets.py # 生成自定义数据集的脚本 ├── requirements.txt # 第三方依赖 ├──benchmark_eval