检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
使用Gallery CLI配置工具上传文件 在服务器(ModelArts Lite云服务器或者是本地Windows/Linux等服务器)上登录Gallery CLI配置工具后,通过命令“gallery-cli upload”可以往AI Gallery仓库上传资产。 命令说明 登录Gallery
昇腾性能自动诊断工具使用说明 昇腾性能自动诊断工具msprof-analyze已发布至官方pypi源中,支持在任意环境上手动安装msprof-analyze分析调优工具,执行命令“pip install msprof-analyze”即可完成安装。 本文旨在帮助您了解msprof
工具介绍及准备工作 本章节主要介绍针对LLaMAFactory开发的测试工具benchmark,支持训练、性能对比、下游任务评测、loss和下游任务对比能力。对比结果以excel文件呈现。方便用户验证发布模型的质量。所有配置都通过yaml文件设置,用户查看默认yaml文件即可知道最优性能的配置。
工具介绍及准备工作 本章节主要介绍针对LLaMAFactory开发的测试工具benchmark,支持训练、性能对比、下游任务评测、loss和下游任务对比能力。对比结果以excel文件呈现。方便用户验证发布模型的质量。所有配置都通过yaml文件设置,用户查看默认yaml文件即可知道最优性能的配置。
Msprobe工具使用指导 Msprobe API预检 Msprobe精度比对 Msprobe梯度监控 父主题: PyTorch迁移精度调优
使用AWQ量化工具转换权重 AWQ(W4A16)量化方案能显著降低模型显存以及需要部署的卡数。降低小batch下的增量推理时延。支持AWQ量化的模型列表请参见支持的模型列表和权重文件。 本章节介绍如何在Notebook使用AWQ量化工具实现推理量化,量化方法为per-group。
使用AWQ量化工具转换权重 AWQ(W4A16)量化方案能显著降低模型显存以及需要部署的卡数。降低小batch下的增量推理时延。支持AWQ量化的模型列表请参见表1。 本章节介绍如何在Notebook使用AWQ量化工具实现推理量化,量化方法为per-group。 Step1 模型量化
过autoAWQ工具进行量化。 方式一:从开源社区下载发布的AWQ量化模型。 https://huggingface.co/models?sort=trending&search=QWEN+AWQ 方式二:使用AutoAWQ量化工具进行量化。 1、使用该量化工具,需要切换conda环境。
使用AWQ量化工具转换权重 AWQ(W4A16/W8A16)量化方案能显著降低模型显存以及需要部署的卡数。降低小batch下的增量推理时延。支持AWQ量化的模型列表请参见支持的模型列表和权重文件。 本章节介绍如何在Notebook使用AWQ量化工具实现推理量化。 量化方法:W4A16
使用AWQ量化工具转换权重 AWQ(W4A16/W8A16)量化方案能显著降低模型显存以及需要部署的卡数。降低小batch下的增量推理时延。支持AWQ量化的模型列表请参见支持的模型列表和权重文件。 本章节介绍如何在Notebook使用AWQ量化工具实现推理量化。 量化方法:W4A16
本章节介绍如何在Notebook使用SmoothQuant量化工具实现推理量化。 SmoothQuant量化工具使用到的脚本存放在代码包AscendCloud-LLM-x.x.x.zip的llm_tools目录下。 代码目录如下: AutoSmoothQuant #量化工具 ├── asc
本章节介绍如何在Notebook使用SmoothQuant量化工具实现推理量化。 SmoothQuant量化工具使用到的脚本存放在代码包AscendCloud-LLM-x.x.x.zip的llm_tools目录下。 代码目录如下: AutoSmoothQuant #量化工具 ├── asc
本章节介绍如何在Notebook使用SmoothQuant量化工具实现推理量化。 SmoothQuant量化工具使用到的脚本存放在代码包AscendCloud-LLM-x.x.x.zip的llm_tools目录下。 代码目录如下: AutoSmoothQuant #量化工具 ├── asc
设置知识库的本地路径。 工具扫描结果解读 AI CPU算子分析和处理 MA-Advisor工具分析结果的html文件中会有下述链接,提供AI CPU算子相关问题的修复指导和案例。 图17 AI CPU算子分析和处理 亲和API替换 MA-Advisor工具分析结果的html文件中
使用AWQ量化工具转换权重 AWQ(W4A16/W8A16)量化方案能显著降低模型显存以及需要部署的卡数。降低小batch下的增量推理时延。支持AWQ量化的模型列表请参见表1。 本章节介绍如何在Notebook使用AWQ量化工具实现推理量化。 量化方法:W4A16 per-group/per-channel
本章节介绍如何在Notebook使用SmoothQuant量化工具实现推理量化。 SmoothQuant量化工具使用到的脚本存放在代码包AscendCloud-LLM-x.x.x.zip的llm_tools目录下。 代码目录如下: AutoSmoothQuant #量化工具 ├── asc
本章节介绍如何在Notebook使用SmoothQuant量化工具实现推理量化。 SmoothQuant量化工具使用到的脚本存放在代码包AscendCloud-LLM-x.x.x.zip的llm_tools目录下。 代码目录如下: AutoSmoothQuant #量化工具 ├── asc
使用SmoothQuant量化工具转换权重 SmoothQuant(W8A8)量化方案能降低模型显存以及需要部署的卡数。也能同时降低首token时延和增量推理时延。支持SmoothQuant(W8A8)量化的模型列表请参见表1。 本章节介绍如何在Notebook使用SmoothQuant量化工具实现推理量化。
单模型性能测试工具Mindspore lite benchmark 在模型精度对齐后,针对Stable Diffusion模型性能调优,您可以通过AOE工具进行自助性能调优,进一步可以通过profiling工具对于性能瓶颈进行分析,并针对性的做一些调优操作。 您可以直接使用ben
Gallery CLI配置工具指南 安装Gallery CLI配置工具 使用Gallery CLI配置工具下载文件 使用Gallery CLI配置工具上传文件 父主题: AI Gallery(新版)