检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
4096B。总共有三种大小:1024B、2048B、4096B) 创建文件越快,越容易触发。 处理方法 可以参照日志提示"write line error"文档进行修复。 如果是分布式作业有的节点有错误,有的节点正常,建议提工单请求隔离有问题的节点。 如果是触发了欧拉操作系统的限制,有如下建议措施。 分目录处理,减少单个目录文件量。
下线范围 下线Region:华为云全部Region。 下线影响 正式下线后,ModelArts Notebook中将不会预置算法套件相关工具ma-cau和ma-cau-adapter,ma-cli命令将不支持创建算法工程,无法在Notebook中基于已有算法工程进行资产(数据、
SDK简介 ModelArts服务软件开发工具包(ModelArts SDK)是对ModelArts服务提供的REST API进行的Python封装,以简化用户的开发工作。用户直接调用ModelArts SDK即可轻松管理数据集、启动AI训练以及生成模型并将其部署为在线服务。 ModelArts
request 原因分析 该报错是因为发送预测请求后,服务出现停止后又启动的情况。 处理方法 需要您检查服务使用的镜像,确定服务停止的原因,修复问题。重新创建AI应用部署服务。 父主题: 服务部署
--local-dir <模型下载路径> 方法三:使用专用多线程下载器 hfd:hfd 是本站开发的 huggingface 专用下载工具,基于成熟工具 git+aria2,可以做到稳定下载不断线。 方法四:使用Git clone,官方提供了 git clone repo_url 的
如下优点: 利用云服务的资源使用便利性,可以直接使用到不同规格的昇腾设备。 通过指定对应的运行镜像,可以直接使用预置的、在迁移过程中所需的工具集,且已经适配到最新的版本可以直接使用。 开发者可以通过浏览器入口一Notebook方式访问,也可以通过VSCode远程开发的模式直接接入
--local-dir <模型下载路径> 方法三:使用专用多线程下载器 hfd:hfd 是本站开发的 huggingface 专用下载工具,基于成熟工具 git+aria2,可以做到稳定下载不断线。 方法四:使用Git clone,官方提供了 git clone repo_url 的
ModelArts上进行训练比本地训练多了一步OBS和容器环境的数据迁移工作。 增加了和OBS交互工作的整个训练流程如下: 建议使用OBSutil作为和OBS交互的工具,如何在本机安装obsutil可以参考obsutil安装和配置。 训练数据、代码、模型下载。(本地使用硬盘挂载或者docker cp,在ModelArts上使用OBSutil)
kv-cache-int8量化支持的模型请参见表1。 本章节介绍如何在Notebook使用tensorRT量化工具实现推理量化。 Step1使用tensorRT量化工具进行模型量化 使用tensorRT 0.9.0版本工具进行模型量化,工具下载使用指导请参见https://github.com/NVIDIA/TensorRT-LLM/tree/v0
使用VS Code创建并调试训练作业 由于AI开发者会使用VS Code工具开发算法或模型,为方便快速将本地代码提交到ModelArts的训练环境、贴近本地开发习惯地编写启动命令,ModelArts提供了一个训练作业场景下的IDE插件ModelArts-HuaweiCloud,用
各个模型深度学习训练加速框架的选择 LlamaFactory框架使用两种训练框架: DeepSpeed和Accelerate都是针对深度学习训练加速的工具,但是它们的实现方式和应用场景有所不同。 DeepSpeed是一种深度学习加速框架,主要针对大规模模型和大规模数据集的训练。DeepSpe
kv-cache-int8量化支持的模型请参见支持的模型列表和权重文件。 Step1使用tensorRT量化工具进行模型量化 在GPU机器上使用tensorRT 0.9.0版本工具进行模型量化,工具下载使用指导请参见https://github.com/NVIDIA/TensorRT-LLM/tree/v0
的1和2有关,目录下文件数量比较大时会启动,使用方式是边用边释放) 处理方法 可以参照日志提示"write line error"文档进行修复。 如果是分布式作业有的节点有错误,有的节点正常,建议提工单请求隔离有问题的节点。 如果是触发了欧拉操作系统的限制,有如下建议措施。 分目录处理,减少单个目录文件量。
权重文件。 本章节介绍如何在Notebook使用tensorRT量化工具实现推理量化。 Step1使用tensorRT量化工具进行模型量化 在GPU机器上使用tensorRT 0.9.0版本工具进行模型量化,工具下载使用指导请参见https://github.com/NVIDIA
服务的APP的AppCode。 APP签名认证需要在header的X-Sdk-Date和Authorization字段中填入通过sdk或者工具使用该在线服务绑定的APP的AppKey和AppSecret所生产的这两个字段的值,以完成对该请求的签名认证。具体指导参见链接:访问在线服务(APP认证)。
VS Code ToolKit连接Notebook 本节介绍如何在本地使用ModelArts提供的VS Code插件工具VS Code ToolKit,协助用户完成SSH远程连接Notebook。 VS Code ToolKit功能介绍 前提条件 已下载并安装VS Code。详细操作请参考安装VS
Megatron-Deepspeed Megatron-Deepspeed是一个基于PyTorch的深度学习模型训练框架。它结合了两个强大的工具:Megatron-LM和DeepSpeed,可在具有分布式计算能力的系统上进行训练,并且充分利用了多个GPU和深度学习加速器的并行处理能力。可以高效地训练大规模的语言模型。
镜像更新升级 ModelArts包含开发环境、训练管理、推理部署三个功能模块,三个模块采用统一的流程提供基础镜像。这些镜像会不定期更新升级,修复已知漏洞。 父主题: 安全
在ModelArts Standard上运行GPU训练任务的场景介绍 不同AI模型训练所需要的数据量和算力不同,在训练时选择合适的存储及训练方案可提升模型训练效率与资源性价比。ModelArts Standard支持单机单卡、单机多卡和多机多卡的训练场景,满足不同AI模型训练的要求。
Platform=ModelArts-Service 原因分析 出现该问题的可能原因如下: 用户的自定义镜像中无ascend_check工具,导致启动预检失败。 用户的自定义镜像中的ascend相关工具不可用,导致预检失败。 处理方法 通过给训练作业加环境变量“MA_DETECT_TRAIN_INJECT_C