检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
使用二分类逻辑回归识别贷款违约风险 为了说明逻辑回归的应用场景,这里引入一个案例,该案例有关银行贷款违约,我们使用二分类逻辑回归来评估信用风险,如果您是银行的贷款人员,那么您希望能够识别那些指示可能违约贷款的人的特征,并使用这些特征来识别不良的贷款。 这里我们使用的数
基于机器学习的油藏产能预测模型研究 在油田勘探和开发过程中,准确预测油藏的产能对于制定合理的开采策略至关重要。传统的产能预测方法通常基于经验公式和统计模型,但随着人工智能和机器学习技术的发展,基于机器学习的油藏产能预测模型正逐渐成为研究热点。本文将探讨如何利用机器学习方法构建油
使用机器学习方法进行地层预测和划分。地层预测和划分是石油工程中重要的任务,它们有助于理解地下油气资源的分布和性质。通过机器学习的应用,我们可以自动化和优化地层预测和划分的过程,提高工作效率和准确性。 在这里,我们将使用Python编程语言和Scikit-learn机器学习库来实现
各个模型深度学习训练加速框架的选择 LlamaFactory框架使用两种训练框架: DeepSpeed和Accelerate都是针对深度学习训练加速的工具,但是它们的实现方式和应用场景有所不同。 DeepSpeed是一种深度学习加速框架,主要针对大规模模型和大规模数据集的训练。D
该API属于KooMap服务,描述: 根据选中的像控点信息,筛选出可能包含该像控点的图片列表,并给出像控点在图片中的位置,提供刺点参考信息。接口URL: "/v1/real3d/spur/predict"
该API属于APIHub22050服务,描述: 测试生成总量预测接口URL: "/ec/energyconsumptionforecast/initForecastXxlJob"
机器学习算法是一种可以从数据中学习的算法。然而,我们所谓的 ‘‘学习’’ 是什么意思呢?Mitchell (1997) 提供了一个简洁的定义:‘‘对于某类任务 T 和性能度量P,一个计算机程序被认为可以从经验 E 中学习是指,通过经验 E 改进后,它在任务 T 上由性能度量 P 衡量的性能有所提升。”
2.1.7 预测一旦你已经建立并评估完了模型,你需要去对未知的数据进行预测。
run(node1)然后是第6讲,单变量线性回归标签是我们要预测的真实事物y,特征是指用于描述数据的输入变量xi样本指数据的特定实例x,有标签样本具有{特征,标签},用于训练模型;无标签样本具有{特征,?},用于对新数据做出预测模型可将样本映射到预测标签,由模型的内部参数定义,内部参数通过学习得到具体到这里,参数就是
sklean的线性模型完成kaggle房价预测问题 https://www.kaggle.com/c/house-prices-Advanced-regression-techniques 赛题给我们79个描述房屋的特征,要求我们据此预测房屋的最终售价,即对于测试集中每个房屋的
用Python进行机器学习的服务员小费预测任务。 文章目录 一、数据集 二、服务员小费预测 2.1 数据导入 2.2 服务员小费分析 2.3 小费预测模型
简单介绍一下机器学习服务是什么
回想一下Bagging学习,我们定义 k 个不同的模型,从训练集有替换采样构造k 个不同的数据集,然后在训练集 i 上训练模型 i。Dropout的目标是在指数级数量的神经网络上近似这个过程。具体来说,在训练中使用Dropout时,我们会使用基于小批量的学习算法和较小的步长,如梯
深度学习界在某种程度上已经与更广泛的计算机科学界隔离开来,并且在很大程度上发展了自己关于如何进行微分的文化态度。更一般地,自动微分(automatic differentiation)领域关心如何以算法方式计算导数。这里描述的反向传播算法只是自动微分的一种方法。它是一种称为反向模式累加(reverse
发挥作用的一个简单例子说起:学习 XOR 函数。 XOR 函数(“异或” 逻辑)是两个二进制值 x1 和 x2 的运算。当这些二进制值中恰好有一个为 1 时,XOR 函数返回值为 1。其余情况下返回值为 0。XOR 函数提供了我们想要学习的目标函数 y = f∗(x)。我们的模型给出了一个函数
油藏监测与预测的机器学习方法研究 在油田勘探和生产中,油藏监测与预测是关键的任务之一。通过有效的监测和预测方法,能够提高油田的生产效率和优化生产策略。近年来,机器学习技术的发展为油藏监测与预测带来了新的机遇。本文将介绍一些常用的机器学习方法,并探讨其在油藏监测与预测中的应用。
本文将介绍在油藏预测建模中应用高级机器学习方法的重要性和效果。通过深度学习和强化学习等技术,可以提高油藏预测的准确性和预测能力。我们将探讨使用神经网络和遗传算法进行油藏预测建模的案例,并展示相关代码示例。 代码示例: 下面是使用Python和TensorFlow库实现的简单神经网络模型:
在线服务预测报错ModelArts.4302 问题现象 在线服务部署完成且服务已经处于“运行中”的状态后,向运行的服务发起推理请求,报错ModelArts.4302。 原因分析及处理方法 服务预测报错ModelArts.4302有多种场景,以下主要介绍两种场景: "error_msg":
在线服务预测报错ModelArts.4206 问题现象 在线服务部署完成且服务已经处于“运行中”的状态,向服务发起推理请求,报错“ModelArts.4206”。 原因分析 ModelArts.4206表示该API的请求流量超过了设定值。为了保证服务的平稳运行,ModelArts
功能一:创建预测预算并接收告警 客户可以针对每天、每月、每季度、每年的成本或使用量情况创建预算告警。 场景示例 客户需要创建一个弹性云服务的按需成本预测预算,每月预算金额为1200元,当预测金额高于预算金额的80%时发送预算告警。 创建预测预算时,必须先开通预测功能,具体操作请参见预测机制。