已找到以下 10000 条记录
  • 深度学习是什么?

    学习过程中获得的信息对诸如文字,图像和声音等数据的解释有很大的帮助。它的最终目标是让机器能够像人一样具有分析学习能力,能够识别文字、图像和声音等数据。 深度学习是一个复杂的机器学习算法,在语音和图像识别方面取得的效果,远远超过先前相关技术。深度学习在搜索技术,数据挖掘,机器学习

    作者: QGS
    814
    2
  • 机器学习深度学习

    业也在快速布局。2、所需数据量机器学习能够适应各种数据量,特别是数据量较小的场景。如果数据量迅速增加,那么深度学习的效果将更加突出,这是因为深度学习算法需要大量数据才能完美理解。3、执行时间执行时间是指训练算法所需要的时间量。一般来说,深度学习算法需要大量时间进行训练。这是因为该

    作者: QGS
    678
    2
  • 机器学习以及深度学习

    所谓“ 机器学习” , 是指利用算法使计算机能够像人一样从数据中挖掘出信息; 而“ 深度学习”作为“机器学习”的一个**子集**, 相比其他学习方法, 使用了更多的参数、模型也更复杂, 从而使得模型对数据的理解更加深人, 也更加智能。 传统机器学习是分步骤来进行的, 每一步的最优解不一定带来结果的最优解;

    作者: 黄生
    347
    1
  • Kaggle机器学习入门实战 -- Titanic乘客生还预测

    进行“悬赏”,数据科学家和机器学习的爱好者们可以基于这个平台提交自己的模型和预测结果,平台会根据测试集对参赛者进行评分排名,排名最高几位可以分享奖金,更重要的是,kaggle为全世界数据分析及机器学习爱好者们提供了一个交流学习的平台,里面不乏机器学习的顶尖高手,各大公司也常年在k

    作者: 华为云社区精选
    发表时间: 2018-03-27 16:54:47
    19634
    2
  • 使用机器学习预测石油炼化产品的质量指标

    练机器学习模型,测试集用于评估模型的性能。 我们可以使用多种机器学习算法来建立模型,如线性回归、决策树、随机森林等。我们还可以使用深度学习算法来处理更复杂的数据和模式。通过训练模型,我们可以得到一个预测模型,用于预测产品质量指标。 实验结果 我们使用历史数据训练了机器学习模型,并

    作者: 皮牙子抓饭
    发表时间: 2023-07-05 09:42:54
    80
    1
  • 预测模型之灰色预测与BP神经网络预测

    2所标注为新信息GM(1,1)模型,新陈代谢GM(1,1)模型,其中新陈代谢GM(1,1)模型是用新预测的数据当作基本数据用来预测下一个新的数据 灰色预测GM(1,1)代码思路: 文件夹中预测模型,灰色预测模型代码: main.m为主函数代码 gm11.m为传统GM(1,1)模型代码

    作者: 凉城予梦
    发表时间: 2022-10-13 04:37:52
    364
    0
  • 查询联邦预测作业列表 - 可信智能计算服务 TICS

    作业名称,最大长度128 job_type String 作业类型。作业类型:SQL.联合SQL分析,HFL.横向联邦学习,VFL.纵向联邦学习,PREDICT.预测 creatorName String 创建人名称,最大值128 create_time String 创建时间。 hfl_type

  • 机器学习深度学习

    有趣的是,二十一世纪初,连接主义学习又卷上重来,掀起了以 “深度学习”为名的热潮.所谓深度学习,狭义地说就是 “很多层 " 的神经网络.在若干测试和竞赛上,尤其是涉及语音、 图像等复杂对象的应用中,深度学习技术取得了优越性能以往机器学习技术在应用中要取得好性能,对使用者的要求较高;而深度学习技术涉及的模型复杂度非常高,以至千只要下工夫

    作者: ypr189
    730
    1
  • 使用ModelArts Standard自动学习实现口罩检测 - AI开发平台ModelArts

    在服务详情页,选择“预测”页签。 图5 上传预测图片 单击“上传”选择上传一张需要预测的图片,单击“预测”,即可在右边的预测结果显示区查看您的预测结果。 图6 查看预测结果(1)--没戴口罩 图7 查看预测结果(2)--戴口罩 后续操作:清除相应资源 在完成预测之后,建议关闭服务,以免产生不必要的计费。

  • 利用机器学习模型预测研究的潜在影响

    技术中的19项。这个模型还预测出2018年在42本生物技术领域期刊发表的50篇论文,它们的影响力可能会跻身未来排名的前5%。这个模型可用来预测任意年份发表的“前5%的论文”,或能补充当前依赖论文引用量指标的文献计量分析系统。看上去很厉害的样子~可以预测未来改变人类和社会的技术会是什么吗?

    作者: 黄生
    1033
    3
  • EstimateSpurPoint 预测刺点信息 - API

    该API属于KooMap服务,描述: 根据选中的像控点信息,筛选出可能包含该像控点的图片列表,并给出像控点在图片中的位置,提供刺点参考信息。接口URL: "/v1/real3d/spur/predict"

  • initForecastXxlJobUsingGET 测试生成总量预测 - API

    该API属于APIHub22050服务,描述: 测试生成总量预测接口URL: "/ec/energyconsumptionforecast/initForecastXxlJob"

  • 深度学习学习

    1%。主要问题是如何设置 ϵ0。若 ϵ0 太大,学习曲线将会剧烈振荡,代价函数值通常会明显增加。温和的振荡是良好的,容易在训练随机代价函数(例如使用 Dropout 的代价函数)时出现。如果学习率太小,那么学习过程会很缓慢。如果初始学习率太低,那么学习可能会卡在一个相当高的代价值。通常,就

    作者: 小强鼓掌
    452
    2
  • 深度学习学习算法

            机器学习算法是一种可以从数据中学习的算法。然而,我们所谓的 “学习”是什么意思呢?Mitchell (1997) 提供了一个简洁的定义:“对于某类任务 T 和性能度量P,一个计算机程序被认为可以从经验 E 中学习是指,通过经验 E 改进后,它在任务 T 上由性能度量

    作者: 小强鼓掌
    944
    0
  • 深度学习学习算法

    机器学习算法是一种可以从数据中学习的算法。然而,我们所谓的 ‘‘学习’’ 是什么意思呢?Mitchell (1997) 提供了一个简洁的定义:‘‘对于某类任务 T 和性能度量P,一个计算机程序被认为可以从经验 E 中学习是指,通过经验 E 改进后,它在任务 T 上由性能度量 P 衡量的性能有所提升。”

    作者: 小强鼓掌
    736
    1
  • 机器学习服务是什么?

    简单介绍一下机器学习服务是什么

  • 深度学习导论

    Network)的扩展和应用为基础,这次浪潮的出现标志着深度学习时代的来临。这一阶段的研究主要集中在如何提高深度神经网络的性能和泛化能力上。SVM作为一种经典的机器学习算法,在分类问题上表现出了良好的性能。随着深度学习的不断发展,其应用领域也在不断扩大。深度学习已经成为了许多领域的重要工具,例如自然

    作者: 林欣
    41
    1
  • 深度学习应用开发》学习笔记-10

    run(node1)然后是第6讲,单变量线性回归标签是我们要预测的真实事物y,特征是指用于描述数据的输入变量xi样本指数据的特定实例x,有标签样本具有{特征,标签},用于训练模型;无标签样本具有{特征,?},用于对新数据做出预测模型可将样本映射到预测标签,由模型的内部参数定义,内部参数通过学习得到具体到这里,参数就是

    作者: 黄生
    1430
    3
  • 分子属性预测 - 医疗智能体 EIHealth

    分子属性预测 基于盘古药物分子大模型,预测化合物ADMET相关的80多种成药属性,有些属性的预测值会给出置信区间,更好地辅助分子设计。 单击“分子属性预测”功能卡片,进入配置页面。 图1 小分子配置页面 在配置页面输入分子信息,及配置相关参数。 输入方式:支持绘制分子、选择文件、手动输入。

  • 【机器学习】银行贷款违约预测

    使用二分类逻辑回归识别贷款违约风险 为了说明逻辑回归的应用场景,这里引入一个案例,该案例有关银行贷款违约,我们使用二分类逻辑回归来评估信用风险,如果您是银行的贷款人员,那么您希望能够识别那些指示可能违约贷款的人的特征,并使用这些特征来识别不良的贷款。 这里我们使用的数

    作者: 毛利
    发表时间: 2021-07-15 00:18:03
    1170
    0