检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
有监督学习,无监督学习,半监督学习,强化学习。强化学习说的非常厉害,适用于下棋和游戏这一类领域,基本逻辑是正确就奖励,错误就惩罚来做一个学习。那么无监督学习的典型应用模式是什么呢?说出来之后你就会觉得无监督学习没有那么神秘了,那就是聚类。一个比较典型的例子就是超市里货架商品摆放,
回想一下Bagging学习,我们定义 k 个不同的模型,从训练集有替换采样构造k 个不同的数据集,然后在训练集 i 上训练模型 i。Dropout的目标是在指数级数量的神经网络上近似这个过程。具体来说,在训练中使用Dropout时,我们会使用基于小批量的学习算法和较小的步长,如梯
为众所周知的“深度学习’’。这个领域已经更换了很多名称,它反映了不同的研究人员和不同观点的影响。全面地讲述深度学习的历史超出了本书的范围。然而,一些基本的背景对理解深度学习是有用的。一般来说,目前为止深度学习已经经历了三次发展浪潮:20世纪40年代到60年代深度学习的雏形出现在控
深度学习概念 深度学习(Deep Learning, DL)由Hinton等人于2006年提出,是机器学习(MachineLearning, ML)的一个新领域。 深度学习被引入机器学习使其更接近于最初的目标----人工智能(AI,Artificial Intelligence)
sklean的线性模型完成kaggle房价预测问题 https://www.kaggle.com/c/house-prices-Advanced-regression-techniques 赛题给我们79个描述房屋的特征,要求我们据此预测房屋的最终售价,即对于测试集中每个房屋的
同的特征置于哪一层。也就是说,相比于传统机器学习算法需要提供人工定义的特征,深度学习可以自己学习如何提取特征。因此,相比于传统的机器学习算法,深度学习并不依赖复杂且耗时的手动特征工程。深度学习中的“深度”体现在将数据转换为所需要数据的层数之深。给定模型进行数据输入,可以将描述模型
首先要明白什么是深度学习?深度学习是用于建立、模拟人脑进行分析学习的神经网络,并模仿人脑的机制来解释数据的一种机器学习技术。它的基本特点是试图模仿大脑的神经元之间传递,处理信息的模式。最显著的应用是计算机视觉和自然语言处理(NLP)领域。显然,“深度学习”是与机器学习中的“神经网络
发挥作用的一个简单例子说起:学习 XOR 函数。 XOR 函数(“异或” 逻辑)是两个二进制值 x1 和 x2 的运算。当这些二进制值中恰好有一个为 1 时,XOR 函数返回值为 1。其余情况下返回值为 0。XOR 函数提供了我们想要学习的目标函数 y = f∗(x)。我们的模型给出了一个函数
通过对课程的学习,从对EI的初体验到对深度学习的基本理解,收获了很多,做出如下总结:深度学习是用于建立、模拟人脑进行分析学习的神经网络,并模仿人脑的机制来解释数据的一种机器学习技术。它的基本特点是试图模仿大脑的神经元之间传递,处理信息的模式。最显著的应用是计算机视觉和自然语言处理
分子属性预测 基于盘古药物分子大模型,预测化合物ADMET相关的80多种成药属性,有些属性的预测值会给出置信区间,更好地辅助分子设计。 单击“分子属性预测”功能卡片,进入配置页面。 图1 小分子配置页面 在配置页面输入分子信息,及配置相关参数。 输入方式:支持绘制分子、选择文件、手动输入。
本文将介绍在油藏预测建模中应用高级机器学习方法的重要性和效果。通过深度学习和强化学习等技术,可以提高油藏预测的准确性和预测能力。我们将探讨使用神经网络和遗传算法进行油藏预测建模的案例,并展示相关代码示例。 代码示例: 下面是使用Python和TensorFlow库实现的简单神经网络模型:
油藏监测与预测的机器学习方法研究 在油田勘探和生产中,油藏监测与预测是关键的任务之一。通过有效的监测和预测方法,能够提高油田的生产效率和优化生产策略。近年来,机器学习技术的发展为油藏监测与预测带来了新的机遇。本文将介绍一些常用的机器学习方法,并探讨其在油藏监测与预测中的应用。
Anthony 如是说:" 这一领域的开发获得了高速发展。深度学习模型在规模上不断扩大,越来越先进, 目前呈指数级增长。令大多数人意想不到的是:这意味着能源消耗正在随之增加。" 一次深度学习训练 =126 个丹麦家庭的年度能源消耗 深度学习训练是数学模型识别大型数据集中的模式的过程。这是一
这样是不好的,因为就像学习训练时将考试题都让你做过一遍,再让你考试就不公平了,类似于作弊了。 应该是考你运用学到的知识,来做没做过的题。 那比较好的做法呢,是有一些数据,把这些数据分一分, 大部分做训练、一小部分做验证、再分一小部分做测试。 下面是模型应用,也就是预测的代码 ```python
准确地预测未来的状态。这对于航空业中对于飞机故障的预测非常关键。 4.2 深度学习模型 近年来,深度学习模型在故障预测方面取得了显著的成果。卷积神经网络(CNN)和长短时记忆网络(LSTM)的结合,能够更好地捕捉时间序列数据中的特征,提高了故障预测的准确性。 这些深度学习模型能
预测接口(排序) 功能介绍 线上预测接口。 URI POST 服务部署成功后返回的预测地址。 请求消息 请求参数请参见表1 请求参数说明。 表1 请求参数说明 参数名称 是否必选 参数类型 说明 rec_num 否 Integer 请求返回数量,默认返回50条。 user_id 是
老师给了我们个任务,用mindSpore完成一个深度学习,求大佬指路,站内有什么方便的教程。要求不能是花卉识别、手写体数字识别、猫狗识别,因为这些按教程已经做过了(然而我还是不会mindSpore)。尽量简单,我们只要是个深度学习就能完成任务。
深度学习是机器学习的一个特定分支。要想学好深度学习,必须对机器学习的基本原理有深刻的理解。本章将探讨贯穿本书其余部分的一些机器学习重要原理。我们建议新手读者或是希望更全面了解的读者参考一些更全面覆盖基础知识的机器学习参考书,例如Murphy (2012) 或者Bishop (20
信息进一步优化神经网络权值的深度置信网络(DBN)。 通过多层处理,逐渐将初始的“低层”特征表示转化为“高层”特征表示后,用“简单模型”即可完成复杂的分类等学习任务。由此可将深度学习理解为进行“特征学习”(feature learning)或“表示学习”(representation
在线服务预测报错ModelArts.4206 问题现象 在线服务部署完成且服务已经处于“运行中”的状态,向服务发起推理请求,报错“ModelArts.4206”。 原因分析 ModelArts.4206表示该API的请求流量超过了设定值。为了保证服务的平稳运行,ModelArts