数设置。 表1 创建预测大模型评测任务参数说明 参数分类 参数名称 参数说明 选择服务 模型类型 选择“预测大模型”。 评测模型 当前支持预测大模型3种模型场景,分别是: 回归 分类 异常检测 服务来源 当前仅支持已部署服务 已部署服务:选择部署至ModelArts Studio平台的模型进行评测。
上期回顾上期简要介绍了一种基于STL分解的带季节性的时序数据的预测算法。STL分解将时序信号分为了季节性、趋势性和残差的加和,同时在预测趋势性分量的时候,可以使用ARIMA算法。ARIMA算法作为一种简单有效的时序预测的算法,通过建立自回归差分移动平均模型,可以对时间序列进行预测。由于STL分解无法处理节假日等
管理预测大模型部署任务 模型更新 完成创建预测大模型部署任务后,可以替换已部署的模型并升级配置,具体步骤如下: 登录ModelArts Studio大模型开发平台,在“我的空间”模块,单击进入所需空间。 图1 我的空间 在左侧导航栏中选择“模型开发 > 模型部署”,单击模型名称,进入模型详情页面。
加智能。借助深度学习,我们可以制造出具有自动驾驶能力的汽车和能够理解人类语音的电话。由于深度学习的出现,机器翻译、人脸识别、预测分析、机器作曲以及无数的人工智能任务都成为可能,或相比以往有了显著改进。虽然深度学习背后的数学概念几十年前便提出,但致力于创建和训练这些深度模型的编程库
CPI预测 CPI预测基于蛋白质的一级序列和化合物的2D结构进行靶点匹配,精确的预测化合物-蛋白相互作用。 单击“CPI预测”功能卡片,进入配置页面。 配置靶点文件。 支持3种输入方式,分别是输入氨基酸序列、选择文件、输入PDB ID 输入FASTA格式氨基酸序列,输入框最多支持
服务公告 全部公告 > 产品公告 > 华为云深度学习服务推理特性(公测)于2018年12月21日00:00(北京时间)下线通知 华为云深度学习服务推理特性(公测)于2018年12月21日00:00(北京时间)下线通知 2018-11-20 尊敬的华为云客户: 华为云计划于2018/12/21
平均绝对误差 平均绝对误差是预测值与真实值之间绝对误差的均值。它同样用于衡量模型预测值与实际值之间的差异,数值越小,表明模型预测的准确性越高。 真实值和预测值 真实值和预测值在图表中的对比情况。 准确率 模型预测结果中,所有预测正确的样本占总样本的比例。数值越高,模型效果越好。
在“创建部署”页面,参考表1完成部署参数设置。 表1 预测大模型部署参数说明 参数分类 部署参数 参数说明 部署配置 模型来源 选择“盘古大模型”。 模型类型 选择“预测大模型”。 部署模型 选择需要进行部署的模型。 部署方式 支持“云上部署”和“边缘部署”,其中,云上部署指算法部署至平台提供的资源
练机器学习模型,因此预测精度低,而且预测的分辨率也只能局限于某个氨基酸是否是RNA结合位点。 沙特阿卜杜拉国王科技大学(KAUST)高欣课题组(http://sfb.kaust.edu.sa)与香港科技大学黄旭辉课题组和南方科技大学陈炜课题组合作,提出一种基于深度学习的RNA
删除实时预测作业 删除实时预测作业 用户登录进入计算节点页面。 在左侧导航树上依次选择“作业管理 > 联邦预测”,打开联邦预测作业页面。 在“联邦预测”页面实时预测tab页,查找待删除的作业,单击“删除”。如果作业处于“部署完成“状态,需要单击“停止部署”后,方可删除。 删除操作无法撤销,请谨慎操作。
特征提取与建模实验:利用构建的供应链风险预测数据集,应用深度学习技术进行特征提取和建模。通过对历史数据进行学习和训练,建立供应链风险预测的深度学习模型。与传统的建模方法进行对比,评估深度学习技术在特征提取和建模方面的优劣。 风险预测与分析实验:选择一些供应链风险数据集,利用建立的深度学习模型进行风险预测和分析。
文章目录 深度学习 - 深度学习 (人工神经网络的研究的概念)1、概念2、相关应用场景3、简介4、区别于浅层学习5、典型模型案例6、深度学习是如何进行训练的自下上升的非监督学习自顶向下的监督学习 深度学习 - 深度学习 (人工神经网络的研究的概念)
较多时我们希望能够实时、自动的预测未来任意时间段的用户数;2. 当前平均用户的资源占比代表了当前的话务模型,最好需要一种能够预测未来话务模型变化的趋势的算法,从而能够更加精准的预测话务模型的变化趋势。这就要求我们的容量评估算法最好有一种基于时序预测的策略,来帮助我们更好的进行容量
实时预测 实时预测通过在计算节点部署在线预测服务的方式,允许用户利用POST请求,在毫秒级时延内获取单个样本的预测结果。 创建实时预测作业 执行实时预测作业 删除实时预测作业 父主题: 联邦预测作业
时序预测-time_series_v2算法部署在线服务预测报错 问题现象 在线服务预测报错:ERROR: data is shorter than windows。 原因分析 该报错说明预测使用的数据行数小于window超参值。 在使用订阅算法时序预测-time_series_v
预测接口 功能介绍 线上预测接口。 URI POST 服务部署成功后返回的预测地址。 请求消息 请求参数请参见表1 请求参数说明。 表1 请求参数说明 参数名称 是否必选 参数类型 说明 rec_num 否 Integer 请求返回数量,默认返回50条。 user_id 是 String
Editor,可以在里面编辑和运行cell。 父主题: 基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型
使用时序预测算法实现访问流量预测
该API属于APIHub22050服务,描述: 总量预测数据生成后,矫正预测数据接口URL: "/ec/energyconsumptionforecast/dataReset"
服务预测失败 问题现象 在线服务部署完成且服务已经处于“运行中”的状态,向服务发起推理请求,预测失败。 原因分析及处理方法 服务预测需要经过客户端、外部网络、APIG、Dispatch、模型服务多个环节。每个环节出现都会导致服务预测失败。 图1 推理服务流程图 出现APIG.XX
您即将访问非华为云网站,请注意账号财产安全