已找到以下 10000 条记录
  • 预测机制 - 成本中心

    预测机制 预测的准确性 预测主要是基于用户在华为云上的历史成本和历史用量情况,对未来的成本和用量进行预测。您可以使用预测功能来估计未来时间内可能消耗的成本和用量,并根据预测数据设置预算提醒,以达到基于预测成本进行预算监控的目的。由于预测是一种估计值,因此可能与您在每个账期内的实际数据存在差异。

  • 概要 - CodeArts IDE Online

    型完成简单的图像分类。 父主题: 基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型

  • 2022美赛单变量深度学习LSTM 时间序列分析预测

    append(history[-1]) # history[-1],就是执行预测,这里我们只是假设predictions数组就是我们预测的结果 history.append(test[i]) # 将新的测试数据加入模型 # 预测效果评估 rmse = sqrt(mean_squared_error(test

    作者: 川川菜鸟
    发表时间: 2022-04-13 17:18:37
    467
    0
  • 机器学习案例(三):未来销售预测

    预测产品的未来销售有助于企业管理产品的制造和广告成本。预测产品的未来销售还有很多好处。因此,如果你想学习使用机器学习预测产品的未来销售量,那么本文适合你。在本文中,我将带您完成使用Python进行机器学习的未来销售预测任务。 文章目录

    作者: 川川菜鸟
    发表时间: 2022-09-24 17:38:49
    119
    0
  • 删除批量预测作业 - 可信智能计算服务 TICS

    删除批量预测作业 删除批量预测作业 用户登录进入计算节点页面。 在左侧导航树上依次选择“作业管理 > 联邦预测”,打开联邦预测作业页面。 在“联邦预测”页面批量预测,查找待删除的作业,单击“删除”。 删除操作无法撤销,请谨慎操作。 图1 删除作业 父主题: 批量预测

  • 使用Python实现深度学习模型:智能空气质量监测与预测

    介绍 智能空气质量监测与预测是环境保护中的重要应用,通过深度学习技术,可以实时监测和预测空气质量,帮助政府和公众采取有效措施,减少空气污染。本文将介绍如何使用Python和深度学习技术来实现智能空气质量监测与预测。 环境准备 首先,我们需要安装一些必要的Python库: pip

    作者: Echo_Wish
    发表时间: 2024-08-21 08:16:25
    106
    0
  • 创建批量预测作业 - 可信智能计算服务 TICS

    必须选择一个已有模型才能创建批量预测作业。 批量预测作业必须选择一个当前计算节点发布的数据集。 创建联邦预测作业 批量预测作业在本地运行,目前支持XGBoost算法、逻辑回归LR算法、深度神经网络FiBiNet算法。 用户登录进入计算节点页面。 在左侧导航树上依次选择“作业管理 > 联邦预测”,打开联邦预测作业页面。

  • 机器学习实战(一)——员工离职预测

    文章目录 员工离职预测——逻辑回归的应用1 读取文件2 独热编码3 划分数据集4 归一化5 逻辑回归预测6 模型预测及评估 员工离职预测——逻辑回归的应用 开始这个案例之前,请先点击这里的数据集进行下载:HR_comma_sep

    作者: ArimaMisaki
    发表时间: 2022-08-09 14:41:16
    219
    0
  • 使用Python实现深度学习模型:智能食品消费行为预测

    引入更多复杂特征(如时间序列数据),进一步提升模型性能; 使用更先进的模型(如深度神经网络、LSTM)处理用户行为模式; 应用强化学习,实时优化促销策略。 技术亮点: 本项目展示了深度学习模型从零构建到实际应用的完整流程; 结合代码与解释,降低了入门门槛。 智能食品消费行为预测正日益成为数据驱动商业的核心技术,未来可

    作者: Echo_Wish
    发表时间: 2024-12-08 23:07:09
    0
    0
  • CPI预测 - 医疗智能体 EIHealth

    CPI预测 CPI预测基于蛋白质的一级序列和化合物的2D结构进行靶点匹配,精确的预测化合物-蛋白相互作用。 单击“CPI预测”功能卡片,进入配置页面。 配置靶点文件。 支持3种输入方式,分别是输入氨基酸序列、选择文件、输入PDB ID 输入FASTA格式氨基酸序列,输入框最多支持

  • 斯坦福DAWNBench深度学习训练及推理榜单:华为云ModelArts拿下双料冠军

    1倍。 ModelArts:领先的深度学习平台技术 作为人工智能最重要的基础技术之一,近年来深度学习也逐步延伸到更多的应用场景,如自动驾驶、互联网、安防、医疗等领域。随着深度学习模型越来越大,所需数据量越来越多,所需的AI算力资源和训练时间越来越长,深度学习的训练和推理性能将是重中之重。

  • 【论文阅读】增量学习近期进展及未来趋势预测

    一、背景介绍目前,在满足一定条件的情况下,深度学习算法在图像分类任务上的精度已经能够达到人类的水平,甚至有时已经能够超过人类的识别精度。但是要达到这样的性能,通常需要使用大量的数据和计算资源来训练深度学习模型,并且目前主流的图像分类模型对于训练过程中没见过的类别,识别的时候完全无

    作者: MUR11
    发表时间: 2020-04-13 15:20:55
    13027
    0
  • 机器学习案例(八):企业电价预测

    电价取决于许多因素。预测电价有助于许多企业了解他们每年需要支付多少电费。电价预测任务基于一个案例研究,你需要根据企业使用的重型机械的每日消耗量来预测每日电价。 文章目录 一、数据集

    作者: 川川菜鸟
    发表时间: 2022-09-24 17:07:05
    101
    0
  • 实时预测 - 可信智能计算服务 TICS

    实时预测 实时预测通过在计算节点部署在线预测服务的方式,允许用户利用POST请求,在毫秒级时延内获取单个样本的预测结果。 创建实时预测作业 执行实时预测作业 删除实时预测作业 父主题: 联邦预测作业

  • 使用时序预测算法实现访问流量预测

    使用时序预测算法实现访问流量预测

  • dataResetUsingPOST 总量预测数据生成后,矫正预测数据 - API

    该API属于APIHub22050服务,描述: 总量预测数据生成后,矫正预测数据接口URL: "/ec/energyconsumptionforecast/dataReset"

  • 华为云hilens

    华为HiLens 华为HiLens 华为HiLens为端云协同AI应用开发与运行管理平台,支持部署华为云ModelArts平台训练的模型,提供云上管理平台、丰富的技能市场和开发者工具与插件,帮助用户高效开发AI应用,并将其部署到多种端侧计算设备运行和在线管理。 华为HiLens为

  • 时序预测-time_series_v2算法部署在线服务预测报错 - AI开发平台ModelArts

    时序预测-time_series_v2算法部署在线服务预测报错 问题现象 在线服务预测报错:ERROR: data is shorter than windows。 原因分析 该报错说明预测使用的数据行数小于window超参值。 在使用订阅算法时序预测-time_series_v

  • 服务预测失败 - AI开发平台ModelArts

    服务预测失败 问题现象 在线服务部署完成且服务已经处于“运行中”的状态,向服务发起推理请求,预测失败。 原因分析及处理方法 服务预测需要经过客户端、外部网络、APIG、Dispatch、模型服务多个环节。每个环节出现都会导致服务预测失败。 图1 推理服务流程图 出现APIG.XX

  • 预测接口 - 推荐系统 RES

    预测接口 功能介绍 线上预测接口。 URI POST 服务部署成功后返回的预测地址。 请求消息 请求参数请参见表1 请求参数说明。 表1 请求参数说明 参数名称 是否必选 参数类型 说明 rec_num 否 Integer 请求返回数量,默认返回50条。 user_id 是 String