已找到以下 10000 条记录
  • 机器学习(八)监督学习之人体运动状态预测

    的标记过的用户姿态,两个文件的行数相同,相同行之间互相对应。 1)特征文件 人体的温度数据可以反映当前活动的剧烈程度,一般在静止状态时,体温趋于稳定在36.5度上下;当温度高于37度时,可能是进行短时间的剧烈运动,比如跑步和骑行。 在数据中有两个型号的加速度传感器,

    作者: 野猪佩奇996
    发表时间: 2022-01-22 15:57:59
    497
    0
  • 深度学习应用开发学习

    件不仅展示了人工智能的演进,也体现了其在系统性思维上的挑战。在机器学习领域,我学习了有监督学习、无监督学习、半监督学习和强化学习等概念。特别是强化学习,它通过奖励和惩罚机制进行学习,非常适合棋类游戏。而无监督学习中的聚类算法,让我意识到它在日常生活中的广泛应用,比如超市货架的商品

    作者: 黄生
    22
    0
  • 华为云深度学习服务推理特性(公测)于2018年12月21日00:00(北京时间)下线通知

    服务公告 全部公告 > 产品公告 > 华为云深度学习服务推理特性(公测)于2018年12月21日00:00(北京时间)下线通知 华为云深度学习服务推理特性(公测)于2018年12月21日00:00(北京时间)下线通知 2018-11-20 尊敬的华为云客户: 华为云计划于2018/12/21

  • 华为云深度学习服务于2019年5月30日00:00(北京时间)退市通知

    产品公告 > 华为云深度学习服务于2019年5月30日00:00(北京时间)退市通知 华为云深度学习服务于2019年5月30日00:00(北京时间)退市通知 2019-04-30 尊敬的华为云客户: 华为云计划于2019/5/30 00:00(北京时间)将深度学习服务正式退市。 华

  • 机器学习案例(六):加密货币价格预测

    来丰厚的回报。比特币、狗狗币是当今流行的加密货币之一。如果你想知道如何通过机器学习预测任何加密货币的未来价格,这篇文章适合你。在本文中,我将引导你完成使用 Python 进行机器学习的加密货币价格预测任务。 文章目录 一、案例实践

    作者: 川川菜鸟
    发表时间: 2022-09-24 17:07:48
    118
    0
  • 基于深度学习的石油炼化过程中的产品销售预测与优化

    模型构建与训练 在特征工程完成后,我们可以选择合适的深度学习算法来构建销售预测模型。常用的深度学习算法包括多层感知机(MLP)、循环神经网络(RNN)、长短期记忆网络(LSTM)等。通过对历史数据进行训练,我们可以建立一个能够预测产品销售情况的深度学习模型。在训练过程中,我们需要将数据集划分

    作者: 皮牙子抓饭
    发表时间: 2023-07-17 09:10:09
    24
    0
  • 自动学习

    持图片分类、物体检测、预测分析、声音分类场景。可根据最终部署环境和开发者需求的推理速度,自动调优并生成满足要求的模型。 图1 自动学习流程 ModelArts 的自动学习不止为入门级开发者使用设计,还提供了“自动学习白盒化”的能力,开放模型

  • 浅谈深度学习

    前言当今计算机科技领域中,深度学习是最具有影响力的技术之一。这篇文章将介绍深度学习是什么,它的应用领域,以及为什么它如此重要。简介深度学习是一种机器学习技术,它使用大量人工神经网络来模拟人类大脑的工作方式。这些神经网络可以自动从数据中学习模式,并根据这些模式进行预测和分类。深度学习技术已经在多

    作者: 运气男孩
    23
    3
  • 日常风险预测 - 优化顾问 OA

    比较指标值和阈值的关系。 比较关系分为>、>=、<、<= 2)智能预测:一种趋势预测方式,根据输入,基于算法预测未来容量趋势。 预测趋势:基于预测算法,根据参考时间段内(过去一个月)的容量趋势,预测未来7天的容量趋势; 风险实例:参考时间段内的容量和预测时间段内的容量,任何一个满足安全阈值,就认为是风险实例,会被输出到风险结果中。

  • 【论文阅读】增量学习近期进展及未来趋势预测

    目前,在满足一定条件的情况下,深度学习算法在图像分类任务上的精度已经能够达到人类的水平,甚至有时已经能够超过人类的识别精度。但是要达到这样的性能,通常需要使用大量的数据和计算资源来训练深度学习模型,并且目前主流的图像分类模型对于训练过程中没见过的类别,识别的时候完全无能为力。一种

    作者: AI资讯
    2342
    37
  • 【论文阅读】增量学习近期进展及未来趋势预测

    目前,在满足一定条件的情况下,深度学习算法在图像分类任务上的精度已经能够达到人类的水平,甚至有时已经能够超过人类的识别精度。但是要达到这样的性能,通常需要使用大量的数据和计算资源来训练深度学习模型,并且目前主流的图像分类模型对于训练过程中没见过的类别,识别的时候完全无能为力。一种

    作者: AI资讯
    3108
    35
  • 深度学习之“深度

    经网络这一术语来自于神经生物学,然而,虽然深度学习的一些核心概念是从人们对大脑的理解中汲取部分灵感而形成的,但深度学习模型不是大脑模型。没有证据表明大脑的学习机制与现代深度学习模型所使用的相同。你可能会读到一些流行科学的文章,宣称深度学习的工作原理与大脑相似或者是根据大脑的工作原

    作者: ypr189
    1571
    1
  • 浅谈深度学习

    学习方法——深度前馈网络、卷积神经网络、循环神经网络等;无监督学习方法——深度信念网、深度玻尔兹曼机,深度自编码器等。深度学习的思想:深度神经网络的基本思想是通过构建多层网络,对目标进行多层表示,以期通过多层的高层次特征来表示数据的抽象语义信息,获得更好的特征鲁棒性。深度学习应用

    作者: QGS
    38
    2
  • 【IoT美学】深度学习:IoT场景下的AI应用与开发—AI智能销量预测

    &nbsp; &nbsp;2.训练区域物品销售量预测模型 &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;3.评估区域物品销售量预测模型 &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;4.应用区域物品销售量预测模型 四、运维反馈 &nbsp; &nbsp;

    作者: Devin
    发表时间: 2020-12-09 13:48:03
    2759
    0
  • 深度学习

    全面地讲述深度学习的历史超出了本书的范围。然而,一些基本的背景对理解深度学习是有用的,深度学习经历了三次发展浪潮:20世纪40年代到60年代深度学习的雏形出现在控制论(cybernetics)中,20世纪80年代到90年代深度学习表现为联结主义(connectionism),直到

    作者: QGS
    955
    4
  • 认识深度学习

    什么是深度学习 要理解什么是深度学习,人们首先需要理解它是更广泛的人工智能领域的一部分。简而言之,人工智能涉及教计算机思考人类的思维方式,其中包括各种不同的应用,例如计算机视觉、自然语言处理和机器学习。 机器学习是人工智能的一个子集,它使计算机在没有明确编程的情况下能够更好地完成

    作者: 建赟
    1845
    2
  • 大规模机器学习在LinkedIn预测模型中的应用实践

    介绍:LinkedIn 产品使用预测模型的情况分享预测模型系统在实践中的成功经验和踩坑教训案例研究LinkedIn 产品使用预测模型的情况LinkedIn 的很多产品是人工智能(AI)驱动的,如 Feed、广告、工作推荐、邮件营销、用户搜索等。预测模型对 LinkedIn 用户体

    作者: HWCloudAI
    发表时间: 2019-09-03 10:16:35
    5511
    0
  • 机器学习案例(十一):水质分析与预测

    练机器学习模型之前简要探索该数据集的每个特征,以预测水样是否安全或不适合饮用。 文章目录 一、数据集 二、案例实践 2.1 读取数据 2.2 探索分析 2.3 水质预测模型建立与预测

    作者: 川川菜鸟
    发表时间: 2022-09-24 16:53:14
    171
    0
  • 数学建模学习(70):CatBoost回归分类预测模型

    本案例使用 CatBoost 创建一个员工流失模型,该模型将预测您哪些员工将在提交辞职信之前辞职。 在人力资源分析领域,数据科学家现在正在使用其人力资源部门的员工数据来预测员工流失率。预测员工流失的技术与零售商用于预测客户流失的技术非常相似。 在这个项目中,我将向您展示如何使用

    作者: 川川菜鸟
    发表时间: 2022-05-18 15:33:55
    265
    0
  • 预测接口(排序) - 推荐系统 RES

    预测接口(排序) 功能介绍 线上预测接口。 URI POST 服务部署成功后返回的预测地址。 请求消息 请求参数请参见表1 请求参数说明。 表1 请求参数说明 参数名称 是否必选 参数类型 说明 rec_num 否 Integer 请求返回数量,默认返回50条。 user_id 是