检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
GPU A系列裸金属服务器节点内如何进行NVLINK带宽性能测试方法? 场景描述 本文指导如何进行节点内NVLINK带宽性能测试,适用的环境为:Ant8或者Ant1 GPU裸金属服务器, 且服务器中已经安装相关GPU驱动软件,以及Pytorch2.0。 GPU A系列裸金属服务器
rank,用于分析计算和任务下发的快慢卡)和集群带宽统计数值(slow link,用于分析集群中的网络通信慢链路)。点开slow rank模块,html中会基于表格展示每张卡不同step的计算耗时、通信耗时和空闲耗时。基于该表格,通常关注计算耗时(compute)和空闲耗时(free
基于advisor的昇腾训练性能自助调优指导 advisor调优总体步骤 创建诊断任务 查看诊断报告 父主题: GPU业务迁移至昇腾训练推理
upyterLab开发模型。 配置本地IDE(Pycharm或者VSCode)联接云上环境调试请参考使用本地IDE开发模型。 父主题: GPU相关问题
x内核模块,它允许支持P2P(Peer-to-Peer)的NVIDIA GPU直接进行内存访问(DMA)。这意味着数据可以直接在多个GPU之间传输,而无需经过CPU或系统内存,这可以显著降低延迟并提高带宽。 所以既然nccl-tests能正常测试, 但是达不到预期,可能是nv_peer_mem异常。
精度对齐 长训Loss比对结果 使用Msprobe工具分析偏差 Loss对齐结果 父主题: Dit模型Pytorch迁移与精度性能调优
3.RC2、7.0.RC1、7.0.0和8.0.RC1。当运行环境实际cann版本与可选值不匹配时选择大版本相近的可选值即可。主要影响亲和api分析和aicpu算子分析。 2 torch_version 2.1.0 否 可选值包括1.11.0和2.1.0,当运行环境实际torch版
性能调优 Profiling数据采集 使用Advisor工具分析生成调优建议 调优前后性能对比 父主题: Dit模型Pytorch迁移与精度性能调优
安装nvidia-fabricmanager Ant系列GPU支持NvLink & NvSwitch,若您使用多GPU卡的机型,需额外安装与驱动版本对应的nvidia-fabricmanager服务使GPU卡间能够互联,否则可能无法正常使用GPU实例。 nvidia-fabricmanager必须和nvidia driver版本保持一致。
案例参考: 从0制作自定义镜像用于创建训练作业(PyTorch+CPU/GPU) 从0制作自定义镜像用于创建训练作业(MPI+CPU/GPU) 从0制作自定义镜像用于创建训练作业(Tensorflow+GPU) 从0制作自定义镜像用于创建训练作业(MindSpore+Ascend)
升级Standard专属资源池驱动 场景介绍 当专属资源池中的节点含有GPU/Ascend资源时,用户基于自己的业务,可能会有自定义GPU/Ascend驱动的需求,ModelArts面向此类客户提供了自助升级专属资源池GPU/Ascend驱动的能力。 驱动升级有两种升级方式:安全升级、强制升级。
GPU A系列裸金属服务器如何进行RoCE性能带宽测试? 场景描述 本文主要指导如何在GPU A系列裸金属服务器上测试RoCE性能带宽。 前提条件 GPU A系列裸金属服务器已经安装了IB驱动。(网卡设备名称可以使用ibstatus或者ibstat获取。华为云Ant8裸金属服务器使用Ubuntu20
使用GPU A系列裸金属服务器有哪些注意事项? 使用华为云A系列裸金属服务器时有如下注意事项: nvidia-fabricmanager版本号必须和nvidia-driver版本号保持一致,可参考安装nvidia-fabricmanager方法。 NCCL必须和CUDA版本相匹配,可单击此处可查看配套关系和安装方法。
将模型复制到多个GPU上 将一个Batch的数据均分到每一个GPU上 各GPU上的模型进行前向传播,得到输出 主GPU(逻辑序号为0)收集各GPU的输出,汇总后计算损失 分发损失,各GPU各自反向传播梯度 主GPU收集梯度并更新参数,将更新后的模型参数分发到各GPU 具体流程图如下:
训练迁移适配 完成环境准备之后,本节将详细介绍Dit模型训练迁移过程。 执行以下命令,下载代码。 git clone https://github.com/facebookresearch/DiT.git cd Dit 执行以下命令,安装依赖项。 pip install diffusers==0
定为statistics表示使用统计量模式,该模式下针对整网训练API输入输出保存最大值、最小值、均值等统计量信息比对,落盘数据量较小。GPU和NPU环境依次进行数据Dump,正常执行结束标识如下图回显Exception: msprobe: exit after iteration
调优前后性能对比 在完成上一章几类调优方式之后,在单卡场景下实测性能调优比对结果如下表所示: 设备 batch_size Steps/Sec 1p-GPU A800 16 3.17 1p-NPU snt9b 313T 16 2.17 1p-NPU snt9b 313T调优后 16 2.58 父主题:
需要注意训练引入随机性的目的是为了增加结果的鲁棒性,理论上不会对训练模型的收敛与否造成影响。 此处做随机性固定主要的目的是为了训练结果可完全复现,从而实现NPU和标杆的精度对齐。 父主题: 精度对齐
训练作业一般需要运行一段时间,根据您的训练业务逻辑和选择的资源不同,训练时长将持续几十分钟到几小时不等。训练作业执行成功后,日志信息如图1所示。 图1 1个计算节点GPU规格worker-0运行日志信息 计算节点个数选择为2,训练作业也可以运行。日志信息如图2和图3所示。 图2 2个计算节点worker-0运行日志信息
场景介绍 当Lite Cluster资源池中的节点含有GPU/Ascend资源时,用户基于自己的业务,可能会有自定义GPU/Ascend驱动的需求,ModelArts面向此类客户提供了自助Lite Cluster资源池升级节点GPU/Ascend驱动的能力。 约束限制 Lite Cl