检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
Models)通常指的是具有海量参数和复杂结构的深度学习模型,广泛应用于自然语言处理(NLP)等领域。开发一个大模型的流程可以分为以下几个主要步骤: 数据集准备:大模型的性能往往依赖于大量的训练数据。因此,数据集准备是模型开发的第一步。首先,需要根据业务需求收集相关的原始数据,确保数据的覆盖面和多样性。例
网页标签符号<p>。 特殊符号,比如● █ ◆。 乱码和无意义的字符�����。 自定义正则过滤 删除符合自定义正则表达式的数据。 自定义关键词过滤 剔除包含关键词的数据。 敏感词过滤 对文本中涉及黄色、暴力、政治、机密和知识产权等敏感数据进行自动检测和过滤。 文本长度过滤 按照设置的文本长度,对长度范围内的数据进行保留。
提取出有用信息,并进行深度加工,以生成高质量的训练数据。 平台提供了图文类、图片类加工算子,算子能力清单见表1、表2。 图文类加工算子能力清单 表1 图文类加工算子能力清单 算子分类 算子名称 算子描述 数据提取 图文提取 提取图文压缩包中的JSON文本和图片,并对图片进行结构化解析(BASE64编码)。
气象类加工算子能力清单 数据加工算子为用户提供了多种数据操作能力,包括数据提取、过滤、转换、打标签等。这些算子能够帮助用户从海量数据中提取出有用信息,并进行深度加工,以生成高质量的训练数据。 平台支持气象类数据集的加工操作,气象类加工算子能力清单见表1。 表1 气象类加工算子能力清单 算子分类 算子名称
预训练阶段:预训练是模型学习基础知识的过程,基于大规模通用数据集进行。例如,在区域海洋要素预测中,可以重新定义深海变量、海表变量,调整深度层、时间分辨率、水平分辨率以及区域范围,以适配自定义区域的模型场景。此阶段需预先准备区域的高精度数据。 微调阶段:在预训练模型的基础上,微
视频类加工算子能力清单 数据加工算子为用户提供了多种数据操作能力,包括数据提取、过滤、转换、打标签和评分等。这些算子能够帮助用户从海量数据中提取出有用信息,并进行深度加工,以生成高质量的训练数据。 平台支持视频类数据集的加工操作,分为数据提取、数据过滤、数据打标三类,视频类加工算子能力清单见表1。
概述 盘古大模型整合华为云强大的计算和数据资源,将先进的AI算法集成在预训练大模型中,打造出具有深度语义理解与生成能力的人工智能大语言模型。可进行对话互动、回答问题、协助创作。 盘古大模型(NLP大模型、科学计算大模型)在ModelArts Studio大模型开发平台部署后,可以通过API调用推理接口。
有标记的训练数据是指每个训练实例都包括输入和期望的输出。 LoRA 局部微调(LoRA)是一种优化技术,用于在深度学习模型的微调过程中,只对模型的一部分参数进行更新,而不是对所有参数进行更新。这种方法可以显著减少微调所需的计算资源和时间,同时保持或接近模型的最佳性能。 过拟合
场景 选择“区域中期海洋智能预测”。 训练类型 可根据科学计算大模型适用场景和建议选择“预训练”和“微调”。 基础模型 可以选择“预置模型”和“我的模型”,模型会自带时间分辨率,会根据预设的时间间隔处理和生成预测结果。 若训练类型为“预训练”,训练任务使用训练数据重新训练出与基础模型分辨率相同的模型。
sdk出现第三方库冲突 当出现第三方库冲突的时,如Jackson,okhttp3版本冲突等。可以引入如下bundle包(3.0.40-rc版本后),该包包含所有支持的服务和重定向了SDK依赖的第三方软件,避免和业务自身依赖的库产生冲突: <dependency> <groupId>com
洋模型中用于模拟海洋生态和物理过程的输入变量。包括海平面气压、海表高度、总叶绿素浓度、叶绿素浓度、硅藻浓度、颗石藻浓度、蓝藻浓度、铁浓度、硝酸盐浓度、混合层深度、海表高度、有效波高等指标。不同模型的指标已页面展示为准。 深海变量 用于描述海洋深层的物理和化学特性,这些参数在海洋模
失、浪费和管理不善的情况?在社会建设专项资金的使用情况中,应规范操作,加强管理,及时纠正和化解建设过程中的解释、调取和留置问题,严防管理漏洞,保证应用资金的安全性和真实性。同时,应建立完善的监管机制,严格管理,加强监督,加强专项资金使用情况的评估,加强对建设过程的监管和评估,节约