检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
单模型性能测试工具Mindspore lite benchmark 在模型精度对齐后,针对Stable Diffusion模型性能调优,您可以通过AOE工具进行自助性能调优,进一步可以通过profiling工具对于性能瓶颈进行分析,并针对性的做一些调优操作。 您可以直接使用ben
20GB的集群性能文件分析,并且能够支持大模型场景下的性能调优,相比于Chrometrace、tensorboard等工具提供了更优的功能和性能。 更多详细信息,请参见昇腾MindStudio-Insight用户指南。 父主题: PyTorch迁移性能调优
GPU A系列裸金属服务器如何更换NVIDIA和CUDA? 场景描述 当裸金属服务器预置的NVIDIA版本和业务需求不匹配时,需要更换NVIDIA驱动和CUDA版本。本文介绍华为云A系列GPU裸金属服务器(Ubuntu20.04系统)如何从“NVIDIA 525+CUDA 12.0”更换为“NVIDIA
可给出性能瓶颈的诊断和修改建议。当迁移开箱性能较低时,通过该工具给出的建议修改代码后,通常可提升10%~30%。 执行pip install msprof-analyze 昇腾性能自动诊断工具使用说明 compare_tools 性能比对工具,将在GPU和NPU采集的Profi
upyterLab开发模型。 配置本地IDE(Pycharm或者VSCode)联接云上环境调试请参考使用本地IDE开发模型。 父主题: GPU相关问题
内置属性:图像尺寸(图像的宽度、高度、深度),类型为List[/topic/body/section/table/tgroup/tbody/row/entry/p/br {""}) (br]。列表中的第一个数字为宽度(像素),第二个数字为高度(像素),第三个数字为深度(深度可以没有,默认为3),如[100
GPU裸金属服务器无法Ping通如何解决 问题现象 在华为云使用GPU裸金属服务器时, 服务器绑定EIP(华为云弹性IP服务)后,出现无法ping通弹性公网IP现象。 原因分析 查看当前GPU裸金属服务器的安全组的入方向规则的配置,发现仅开通了TCP协议的22端口。 ping命令
nsor.to(device="cuda:7")",将张量搬到了7号GPU卡上,超过了实际可用的ID号。 如果cuda相关运算设置的卡ID号在所选规格范围内,但是依旧出现了上述报错。可能是该资源节点中存在GPU卡损坏的情况,导致实际能检测到的卡少于所选规格。 处理方法 建议直接根
GPU裸金属服务器使用EulerOS内核误升级如何解决 问题现象 GP Vnt1裸金属服务器,操作系统为EulerOS 2.9(基于CentOS制作的Linux发行版),经常遇到服务器重启后,操作系统内核无故升级,导致系统上原安装的nvidia-driver等软件无法使用,只能卸载重新安装。
msprobe精度比对 精度比对功能主要针对两类场景的问题: 同一模型,从CPU或GPU移植到NPU中存在精度下降问题,对比NPU芯片中的API计算数值与CPU或GPU芯片中的API计算数值,进行问题定位。 同一模型,进行迭代(模型、框架版本升级或设备硬件升级)时存在的精度下降问
比对NPU和GPU预检结果。 msprobe -f pytorch api_precision_compare -npu /home/xxx/npu/accuracy_checking_details_{timestamp}.csv -gpu /home/xxx/gpu/accu
超过最大递归深度导致训练作业失败 问题现象 ModelArts训练作业报错: RuntimeError: maximum recursion depth exceeded in __instancecheck__ 原因分析 递归深度超过了Python默认的递归深度,导致训练失败。
s/code/main.py”。 超参 当资源规格为单机多卡时,需要指定超参world_size和rank。 当资源规格为多机时(即实例数大于 1),无需设置超参world_size和rank,超参会由平台自动注入。 方式二:使用自定义镜像功能,通过torch.distributed
Dit模型Pytorch迁移与精度性能调优 场景介绍及环境准备 训练迁移适配 精度对齐 性能调优 父主题: GPU业务迁移至昇腾训练推理
"比对结果输出目录") 最终生成结果为similarities.csv表示每个Step各个权重参数两次比对相似度值,以及 {param_name}.png和summary_similarities.png以折线图方式表示各个Step相似度不比对结果。 详细工具的使用指导请参考梯度状态监控工具介绍。
经过对裸金属服务器排查,发现nvidia-drvier和cuda都已安装,并且正常运行。nvidia-fabricmanager服务可以使单节点GPU卡间互联,在多卡GPU机器上,出现这种问题可能是nvidia-fabricmanger异常导致。 执行以下命令,查看NVIDIA和CUDA的版本,以及nvid
代了U-Net,处理图像生成和去噪等任务。核心思想是通过Transformer的自注意力机制来捕捉序列中的依赖关系,从而提高生成图像的质量。研究表明,具有较高GFLOPs的DiT模型在图像生成任务中表现更好,尤其是在ImageNet 512×512和256×256的测试中,DiT-XL/2模型实现了2
示例:从 0 到 1 制作自定义镜像并用于训练(MPI+CPU/GPU) 本章节介绍如何从0到1制作镜像,并使用该镜像在ModelArts平台上进行训练。镜像中使用的AI引擎是MPI,训练使用的资源是CPU或GPU。 本实践教程仅适用于新版训练作业。 场景描述 本示例使用Linux
GPU A系列裸金属服务器无法获取显卡如何解决 问题现象 在A系列裸金属服务器上使用PyTorch一段时间后,出现获取显卡失败的现象,报错如下: > torch.cuda.is_available() /usr/local/lib/python3.8/dist-packages/torch/cuda/__init__
长训Loss比对结果 在单卡环境下,执行一个Epoch训练任务,GPU和NPU训练叠加效果如下: 上图中的红色曲线为GPU Loss折线图,蓝色曲线为NPU训练Loss折线图。在整网训练单个Epoch情况下,Loss总体的绝对偏差大约为0.08181。 父主题: 精度对齐