检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
当Notebook实例不再需要时,调用删除Notebook实例接口删除实例。 前提条件 已获取IAM的EndPoint和ModelArts的EndPoint。 确认服务的部署区域,获取项目ID和名称、获取帐号名和帐号ID和获取用户名和用户ID。 操作步骤 调用认证鉴权接口获取用户的Token。 请求消息体: URI格式:POST
务稳健发展。 政府 提高公共服务的效率和质量,加强公共安全,优化政策方案和决策过程等。 金融 为金融机构带来更加高效、智能、精准的服务。 矿山 提供端到端AI生产线能力和高性能AI算力,提升大模型推理效率,为矿山行业带来更高效、智能、安全和可持续的生产方案。 铁路 实现列车智能调
查看当前moxing调用的接口版本:file_io._LARGE_FILE_METHOD,如果输出值为1则为V1版本,如果输出值为2,则为V2版本。 V1版本修改:file_io._NUMBER_OF_PROCESSES=1 V2版本修改:可以 file_io._LARGE_FILE_METHOD = 1,将模
Standard模型训练 使用ModelArts Standard自定义算法实现手写数字识别 基于ModelArts Standard运行GPU训练作业
量化。当前支持per-tensor静态量化,支持kv-cache-int8量化和FP16、BF16、AWQ、smoothquant的组合。 kv-cache-int8量化支持的模型请参见支持的模型列表和权重文件。 本章节介绍如何在Notebook使用tensorRT量化工具实现推理量化。
量化。当前支持per-tensor静态量化,支持kv-cache-int8量化和FP16、BF16、AWQ、smoothquant的组合。 kv-cache-int8量化支持的模型请参见支持的模型列表和权重文件。 本章节介绍如何在Notebook使用tensorRT量化工具实现推理量化。
目录下,查找到summmary目录,有txt和csv两种保存格式。 总体打分结果参考txt和csv文件的最后一行,举例如下: npu: mmlu:46.6 gpu: mmlu:47 NPU打分结果(mmlu取值46.6)和GPU打分结果(mmlu取值47)进行对比,误差在1以内(计算公式:(47-46
flavor 是 String 资源规格,比如:modelarts.vm.gpu.tnt004。 count 是 Integer 资源规格的保障资源量。 maxCount 否 Integer 资源规格的弹性资源量。物理池中该值和count必须一致。 extendParams 否 extendParams
目录下,查找到summmary目录,有txt和csv两种保存格式。 总体打分结果参考txt和csv文件的最后一行,举例如下: npu: mmlu:46.6 gpu: mmlu:47 NPU打分结果(mmlu取值46.6)和GPU打分结果(mmlu取值47)进行对比,误差在1以内(计算公式:(47-46
Integer 可以选择的最大节点数量(max_num,为1代表不支持分布式)。 cpu Cpu object cpu规格信息。 gpu Gpu object gpu规格信息。 npu Npu object Ascend规格信息。 memory Memory object 内存信息。 disk
Integer 可以选择的最大节点数量(max_num,为1代表不支持分布式)。 cpu cpu object cpu规格信息。 gpu gpu object gpu规格信息。 npu npu object Ascend规格信息。 memory memory object 内存信息。 表37
训练作业 OBS操作相关故障 云上迁移适配故障 硬盘限制故障 外网访问限制 权限问题 GPU相关问题 业务代码问题 预置算法运行故障 训练作业运行失败 专属资源池创建训练作业 训练作业性能问题 Ascend相关问题
tools/run.sh 资源池:在“专属资源池”页签选择GPU规格的专属资源池。 规格:选择8卡GPU规格。 计算节点:1。 SFS Turbo:增加挂载配置,选择SFS名称,云上挂载路径为“/home/ma-user/work”。 为了和Notebook调试时代码路径一致,保持相同的启
Lite Server资源使用 LLM/AIGC/数字人基于Server适配NPU的训练推理指导 GPT-2基于Server适配PyTorch GPU的训练推理指导
2-Vision-11B模型的训练过程,包括finetune full训练和LoRA训练。 约束限制 本方案目前仅适用于企业客户。 本文档适配昇腾云ModelArts 6.3.912版本,请参考获取配套版本的软件包和镜像,请严格遵照版本配套关系使用本文档。 本文档中的模型运行环境是ModelArts
此处的“demo”为用户自定义的OBS存放代码路径的最后一级目录,可以根据实际修改。 资源池:在“专属资源池”页签选择GPU规格的专属资源池。 规格:选择单GPU规格。 单击“提交”,在“信息确认”页面,确认训练作业的参数信息,确认无误后单击“确定”。 训练作业创建完成后,后台将
创建单机多卡的分布式训练(DataParallel) 创建多机多卡的分布式训练(DistributedDataParallel) 示例:创建DDP分布式训练(PyTorch+GPU) 示例:创建DDP分布式训练(PyTorch+NPU) 父主题: 使用ModelArts Standard训练模型
BF16和FP16说明 在大模型训练中,BF16(Brain Floating Point)和FP16(Float16)都是使用的半精度浮点数格式,但它们在结构和适用性上有一些重要的区别。 BF16:具有8个指数位和7个小数位。在处理大模型时有优势,能够避免在训练过程中数值的上溢
BF16和FP16说明 在大模型训练中,BF16(Brain Floating Point)和FP16(Float16)都是使用的半精度浮点数格式,但它们在结构和适用性上有一些重要的区别。 BF16:具有8个指数位和7个小数位。在处理大模型时有优势,能够避免在训练过程中数值的上溢
配置Lite Server软件环境 NPU服务器上配置Lite Server资源软件环境 GPU服务器上配置Lite Server资源软件环境 父主题: Lite Server资源配置