检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
BF16和FP16说明 在大模型训练中,BF16(Brain Floating Point)和FP16(Float16)都是使用的半精度浮点数格式,但它们在结构和适用性上有一些重要的区别。 BF16:具有8个指数位和7个小数位。在处理大模型时有优势,能够避免在训练过程中数值的上溢
BF16和FP16说明 在大模型训练中,BF16(Brain Floating Point)和FP16(Float16)都是使用的半精度浮点数格式,但它们在结构和适用性上有一些重要的区别。 BF16:具有8个指数位和7个小数位。在处理大模型时有优势,能够避免在训练过程中数值的上溢
PyCharm插件调试训练ResNet50图像分类模型 示例:从 0 到 1 制作自定义镜像并用于训练(PyTorch+CPU/GPU) 示例:从 0 到 1 制作自定义镜像并用于训练(MPI+CPU/GPU) 使用ModelArts Standard一键完成商超商品识别模型部署 专属资源池训练
dtype=auto,tensor_parallel_size=${tensor_parallel_size},gpu_memory_utilization=${gpu_memory_utilization},add_bos_token=True,max_model_len=${max_model_len}
专属资源池支持打通用户的网络,在该专属资源池中运行的作业可以访问打通网络中的存储和资源。例如,在创建训练作业时选择打通了网络的专属资源池,训练作业创建成功后,支持在训练时访问SFS中的数据。 专属资源池支持自定义物理节点运行环境相关的能力,例如GPU/Ascend驱动的自助升级,而公共资源池暂不支持。 专属资源池使用说明
whl”文件无法安装,在启动文件中添加如下代码,查看当前pip命令支持的文件名和版本。 import pip print(pip.pep425tags.get_supported()) 获取到支持的文件名和版本如下: [('cp36', 'cp36m', 'manylinux1_x86_64')
可选项。用于指定DeepSpeed的配置文件相对或绝对路径。DeepSpeed是一个开源库,用于加速深度学习训练。通过使用DeepSpeed,可以实现如混合精度训练、ZeRO内存优化等高级特性,以提高训练效率和性能 stage sft 表示当前的训练阶段。可选择值:【sft、rm、ppo、dpo】
"GPU": 1, "gpu_type": "v100NV32", "memory": "64GiB" }, "status": "onSale", "type": "GPU"
ModelArts提供了AI全流程开发的套餐包,面向有AI基础的开发者,提供机器学习和深度学习的算法开发及部署全功能,包含数据处理、模型开发、模型训练、模型管理和模型部署流程。 约束限制 套餐包在购买和使用时的限制如下: 套餐包和购买时选定的区域绑定,套餐包只能使用于购买时选定的区域,且只能用于公
x86:x86架构 arm64:ARM架构 cpu String CPU核心数量。 memory String 内存大小,单位为Gi。 gpu gpu object GPU信息。 npu npu object NPU信息。 dataVolume Array of dataVolume objects
操作三:鼠标悬浮在图片上的时间节点,可查看对应时间节点的占用率情况。 表1 参数说明 参数 说明 cpuUsage cpu使用率。 gpuMemUsage gpu内存使用率。 gpuUtil gpu使用情况。 memUsage 内存使用率。 npuMemUsage npu内存使用率。 npuUtil npu使用情况。
w、PyTorch、MXNet、MindSpore等深度学习引擎之上,使得这些计算引擎分布式性能更高,同时易用性更好。MoXing包含很多组件,其中MoXing Framework模块是一个基础公共组件,可用于访问OBS服务,和具体的AI引擎解耦,在ModelArts支持的所有A
Cluster资源池驱动:当资源池中的节点含有GPU/Ascend资源时,用户基于自己的业务,可能会有自定义GPU/Ascend驱动的需求,ModelArts面向此类客户提供了自助升级专属资源池GPU/Ascend驱动的能力。 监控Lite Cluster资源:ModelArts支持使用AOM和Promethe
"multi engine, gpu, python 3.6 for notebook", "flavor_type": "GPU", "id": "Multi-Engine 1.0 (python3)-gpu",
iron(device_type="CPU")完成配置,环境中只需配置运行一次。 GPU环境,调用Model.configure_tf_infer_environ(device_type="GPU")完成配置,环境中只需配置运行一次。 1 2 3 4 5 6 7 8
project_id 是 String 用户项目ID。获取方法请参见获取项目ID和名称。 plugintemplate_name 是 String 插件模板的名称。可选值如下: gpu-driver:GPU驱动插件模板信息 npu-driver:NPU驱动插件模板信息 请求参数 无 响应参数
"GPU": 1, "gpu_type": "v100NV32", "memory": "64GiB" }, "status": "onSale", "type": "GPU"
spec_code String 训练作业资源规格。 gpu_type String 资源规格gpu的类型。 create_time Long 训练作业参数创建时间 。 cpu String 资源规格CPU内存。 gpu_num Integer 资源规格gpu的个数。 core String 资源规格的核数。
当Notebook实例不再需要时,调用删除Notebook实例接口删除实例。 前提条件 已获取IAM的EndPoint和ModelArts的EndPoint。 确认服务的部署区域,获取项目ID和名称、获取帐号名和帐号ID和获取用户名和用户ID。 操作步骤 调用认证鉴权接口获取用户的Token。 请求消息体: URI格式:POST
查看当前moxing调用的接口版本:file_io._LARGE_FILE_METHOD,如果输出值为1则为V1版本,如果输出值为2,则为V2版本。 V1版本修改:file_io._NUMBER_OF_PROCESSES=1 V2版本修改:可以 file_io._LARGE_FILE_METHOD = 1,将模