检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
GPU A系列裸金属服务器节点内如何进行NVLINK带宽性能测试方法? 场景描述 本文指导如何进行节点内NVLINK带宽性能测试,适用的环境为:Ant8或者Ant1 GPU裸金属服务器, 且服务器中已经安装相关GPU驱动软件,以及Pytorch2.0。 GPU A系列裸金属服务器
自分配到2个GPU。但是TFJob1和TFJob2均需要4块GPU卡才能运行起来。这样TFJob1和TFJob2处于互相等待对方释放资源,这种死锁情况造成了GPU资源的浪费。 亲和调度问题 分布式训练中,Ps和Worker存在很频繁的数据交互,所以Ps和Worker之间的带宽直接影响了训练的效率。
查看云服务器的实例规格,确认用户使用的镜像信息。 如果使用NVIDIA Tesla T4 GPU(例如,Pi2或G6规格),请参见T4 GPU设备显示异常进行处理。 如果使用其他规格的GPU云服务器,执行下一步。 查看系统日志“/var/log/message”,是否存在驱动相关报错。
性能调优 Profiling数据采集 使用Advisor工具分析生成调优建议 调优前后性能对比 父主题: Dit模型PyTorch迁移与精度性能调优
p1服务器安装NVIDIA GPU驱动和CUDA工具包 操作场景 GPU加速型p1(physical.p1.large规格)裸金属服务器创建成功后,需安装NVIDIA GPU驱动和CUDA工具包,从而实现计算加速功能。 前提条件 已绑定弹性公网IP。 已下载对应操作系统所需驱动的安装包。
p3服务器安装NVIDIA GPU驱动和CUDA工具包 操作场景 GPU加速型p3(physical.p3.large规格)裸金属服务器创建成功后,需安装NVIDIA GPU驱动和CUDA工具包,从而实现计算加速功能。 前提条件 已绑定弹性公网IP。 已下载对应操作系统所需驱动的安装包。
性并安装了必要的初始化插件,所有用户均可使用,涵盖大部分主流操作系统。本文介绍公共镜像类型和公共镜像特点。 公共镜像类型 华为云提供的公共镜像覆盖华为自研的HCE OS、EulerOS镜像和第三方商业镜像,您可以根据实际需要选择。在使用过程中,如果遇到操作系统类问题,您可以联系操
分页查询智能任务列表,包括“智能标注”和“自动分组”两大类智能任务。可通过指定“type”参数来单独查询某类任务的列表。 “智能标注”是指基于当前标注阶段的标签及图片学习训练,选中系统中已有的模型进行智能标注,快速完成剩余图片的标注操作。“智能标注”又包含“主动学习”和“预标注”两类。 “主动
图2 基于Res-VAE和表达谱对单细胞数据降维 使用该Notebook时需要运行相应的代码模块,运行步骤如下所示。 环境配置:加载AutoGenome以及辅助绘图的软件包。 读取配置文件:通过json文件配置输入和输出路径。 模型训练:针对提供的数据和模型参数,AutoGeno
p2服务器安装NVIDIA GPU驱动和CUDA工具包 操作场景 GPU加速型p2(physical.p2.large规格)裸金属服务器创建成功后,需安装NVIDIA GPU驱动和CUDA工具包,从而实现计算加速功能。 前提条件 已绑定弹性公网IP。 已下载对应操作系统所需驱动的安装包。
使用GPU A系列裸金属服务器有哪些注意事项? 使用华为云A系列裸金属服务器时有如下注意事项: nvidia-fabricmanager版本号必须和nvidia-driver版本号保持一致,可参考安装nvidia-fabricmanager方法。 NCCL必须和CUDA版本相匹配,可单击此处可查看配套关系和安装方法。
GPU A系列裸金属服务器如何进行RoCE性能带宽测试? 场景描述 本文主要指导如何在GPU A系列裸金属服务器上测试RoCE性能带宽。 前提条件 GPU A系列裸金属服务器已经安装了IB驱动。(网卡设备名称可以使用ibstatus或者ibstat获取。华为云Ant8裸金属服务器使用Ubuntu20
upyterLab开发模型。 配置本地IDE(Pycharm或者VSCode)联接云上环境调试请参考使用本地IDE开发模型。 父主题: GPU相关问题
如何查询NVIDIA的错误信息 查询NVDIA错误信息的方法如下: 登录弹性云服务器。 执行以下命令,查看是否存在error信息,保存回显结果。 dmesg | grep -i nvidia 也可过滤关键字后保存结果,例如:NVRM、nouveau、nvidia、nv字样等。 父主题:
训练迁移适配 完成环境准备之后,本节将详细介绍Dit模型训练迁移过程。 执行以下命令,下载代码。 git clone https://github.com/facebookresearch/DiT.git cd Dit 执行以下命令,安装依赖项。 pip install diffusers==0
er Ant系列GPU支持NvLink & NvSwitch,如果您使用多GPU卡的机型,需额外安装与驱动版本对应的nvidia-fabricmanager服务使GPU卡间能够互联,否则可能无法正常使用GPU实例。 nvidia-fabricmanager必须和nvidia driver版本保持一致。
案例参考: 从0制作自定义镜像用于创建训练作业(PyTorch+CPU/GPU) 从0制作自定义镜像用于创建训练作业(MPI+CPU/GPU) 从0制作自定义镜像用于创建训练作业(Tensorflow+GPU) 从0制作自定义镜像用于创建训练作业(MindSpore+Ascend)
如果您的弹性云服务器未安装GPU驱动,可参见(推荐)自动安装GPU加速型ECS的GPU驱动(Windows)。 安装GPU驱动需使用默认路径。 GPU驱动安装完后,需重启GPU加速型实例,否则可能导致采集GPU指标及上报GPU事件失败。 GPU驱动正常安装后,最多10分钟将在控制台看到采集到的GPU指标数据。
调优前后性能对比 在完成上一章几类调优方式之后,在单卡场景下实测性能调优比对结果如下表所示: 设备 batch_size Steps/Sec 1p-GPU Ant8 16 3.17 1p-NPU snt9b 313T 16 2.17 1p-NPU snt9b 313T调优后 16 2.58 父主题:
异构资源配置 GPU配置 GPU虚拟化:CCE GPU虚拟化采用自研xGPU虚拟化技术,能够动态对GPU设备显存与算力进行划分,单个GPU卡最多虚拟化成20个GPU虚拟设备。相对于静态分配来说,虚拟化的方案更加灵活,最大程度保证业务稳定的前提下,可以完全由用户自己定义使用的GPU量,提高