检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
训练启动脚本说明和参数配置 本代码包中集成了不同模型(包括llama2、llama3、Qwen、Qwen1.5 ......)的训练脚本,并可通过不同模型中的训练脚本一键式运行。训练脚本可判断是否完成预处理后的数据和权重转换的模型。如果未完成,则执行脚本,自动完成数据预处理和权重转换的过程。
训练启动脚本说明和参数配置 本代码包中集成了不同模型的训练脚本,并可通过不同模型中的训练脚本一键式运行。训练脚本可判断是否完成预处理后的数据和权重转换的模型。如果未完成,则执行脚本,自动完成数据预处理和权重转换的过程。 如果用户进行自定义数据集预处理以及权重转换,可通过编辑 1_preprocess_data
训练启动脚本说明和参数配置 本代码包中集成了不同模型的训练脚本,并可通过不同模型中的训练脚本一键式运行。训练脚本可判断是否完成预处理后的数据和权重转换的模型。若未完成,则执行脚本,自动完成数据预处理和权重转换的过程。 若用户进行自定义数据集预处理以及权重转换,可通过编辑 1_preprocess_data
Long 指定作业的引擎ID,默认为“0”。查询自动学习资源规格无需此参数。 project_type 否 Integer 项目类型。默认为“0”。 0:非自动学习项目。 1:自动学习,图像分类。 2:自动学习,物体检测。 3:自动学习,预测分析。 请求消息 无请求参数。 响应消息 响应参数如表3所示。
rs机器学习库是一个开源的基于Transformer模型结构提供的预训练语言库。Transformers库注重易用性,屏蔽了大量AI模型开发使用过程中的技术细节,并制定了统一合理的规范。使用者可以便捷地使用、下载模型。同时支持用户上传自己的预训练模型到在线模型资产仓库中,并发布上架给其他用户使用。AI
训练启动脚本说明和参数配置 本代码包中集成了不同模型的训练脚本,并可通过不同模型中的训练脚本一键式运行。训练脚本可判断是否完成预处理后的数据和权重转换的模型。如果未完成,则执行脚本,自动完成数据预处理和权重转换的过程。 如果用户进行自定义数据集预处理以及权重转换,可通过编辑 1_preprocess_data
如何用ModelArts训练基于结构化数据的模型? 针对一般用户,ModelArts提供自动学习的预测分析场景来完成结构化数据的模型训练。 针对高阶用户,ModelArts在开发环境提供创建Notebook进行代码开发的功能,在训练作业提供创建大数据量训练任务的功能;用户在开发、
可以两个账号同时进行一个数据集的标注吗? 团队标注的数据分配机制是什么? 标注过程中,已经分配标注任务后,能否将一个labeler从标注任务中删除?删除后对标注结果有什么影响?如果不能删除labeler,能否删除将他的标注结果从整体标注结果中分离出来? 数据标注中,难例集如何定义?什么情况下会被识别为难例? 物体检测标注时,支持叠加框吗?
训练启动脚本说明和参数配置 本代码包中集成了不同模型(包括llama2、llama3、Qwen、Qwen1.5 ......)的训练脚本,并可通过不同模型中的训练脚本一键式运行。训练脚本可判断是否完成预处理后的数据和权重转换的模型。如果未完成,则执行脚本,自动完成数据预处理和权重转换的过程。
训练启动脚本说明和参数配置 本代码包中集成了不同模型的训练脚本,并可通过不同模型中的训练脚本一键式运行。训练脚本可判断是否完成预处理后的数据和权重转换的模型。若未完成,则执行脚本,自动完成数据预处理和权重转换的过程。 若用户进行自定义数据集预处理以及权重转换,可通过编辑 1_preprocess_data
填写数据集基本信息,数据集的“名称”和“描述”。 选择“标注场景”和“标注类型”,本案例中分别选择“图片”和“物体检测”。 图1 数据集标注场景和标注类型 选择OBS中的数据目录作为“数据集输入位置”,选择不同的OBS目录作为“数据集输出位置”。 图2 数据集的输入位置和输出位置 参数填写无误
创建导入任务 支持从OBS中导入新的数据,导入方式包括目录导入和Manifest文件导入。 dataset.import_data(path=None, anntation_config=None, **kwargs) 不同类型的数据集支持的导入方式如表1所示。 表1 不同数据集支持的导入方式
memoryUsed, gpu.memoryUtil*100, gpu.memoryTotal)) 注:用户在使用pytorch/tensorflow等深度学习框架时也可以使用框架自带的api进行查询。 父主题: 更多功能咨询
面向熟悉代码编写和调测的AI工程师 ModelArts Standard自动学习 使用Standard自动学习实现垃圾分类 本案例基于华为云AI开发者社区AI Gallery中的数据集资产,让零AI基础的开发者使用ModelArts Standard的自动学习功能完成“图像分类”AI模型的训练和部署。
PYTORCH_NPU_ALLOC_CONF = expandable_segments:True 将yaml文件中的per_device_train_batch_size调小,重新训练如未解决则执行下一步。 替换深度学习训练加速的工具或增加zero等级,可参考模型NPU卡数、梯度累积值取值表,如原使用Acc
Standard的自动学习可以帮助用户零代码构建AI模型。自动学习功能根据标注数据自动设计模型、自动调参、自动训练、自动压缩和部署模型。开发者无需专业的开发基础和编码能力,只需上传数据,通过自动学习界面引导和简单操作即可完成模型训练和部署。具体请参见自动学习简介。 Standar
Standard一键完成商超商品识别模型部署。 ModelArts Standard同时提供了自动学习功能,帮助用户零代码构建AI模型,详细介绍请参见使用ModelArts Standard自动学习实现垃圾分类。 面向AI工程师,熟悉代码编写和调测,您可以使用ModelArts Standard提供的在线代码开
模式直接接入到云上环境中完成迁移开发与调测,最终生成适配昇腾的推理应用。 当前支持以下两种迁移环境搭建方式: ModelArts Standard:在Notebook中,使用预置镜像进行。 ModelArts Lite DevServer:在裸金属服务器中 ,自助配置好存储、安装固件、驱动、配置网络等。
、云的各种设备上和各种场景上,并且还为个人开发者、企业和设备生产厂商提供了一整套安全可靠的一站式部署方式。 图1 部署模型的流程 在线推理服务,可以实现高并发,低延时,弹性伸缩,并且支持多模型灰度发布、A/B测试。 支持各种部署场景,既能部署为云端的在线推理服务和批量推理任务,也能部署到端,边等各种设备。
0进行微调。微调脚本默认使用 transformers Trainer 和 DeepSpeed。 数据准备 要准备微调数据,您应该将每个样本制定为一个字典,其中包含一个 ID、一个图像路径(或图像列表)和一个对话列表。然后,将数据样本保存在 JSON 文件中。 对于视觉语言任务,您必须提供占位符(例如<i