检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
例如:需要动态Shape,需要动态Shape的模型有ResNet-50、YOLOv5。 - 参数类型(FP32/FP16) FP32还是FP16混合,判断精度调优难度。 例如:ResNet-50、YOLOv5模型使用FP16。BertLarge使用FP32。 - 模型变更频率 模型变更场景如下:
使用SSH工具连接Notebook,服务器的进程被清理了,GPU使用率显示还是100% 原因是代码运行卡死导致被进程清理,GPU显存没有释放;或者代码运行过程中内存溢出导致程序被清理,需要释放下显存,清理GPU,然后重新启动。为了避免进程结束引起的代码未保存,建议您每隔一段时间保存下代码输出至OBS桶或者容器
使用GPU虚拟化 本文介绍如何使用GPU虚拟化能力实现算力和显存隔离,高效利用GPU设备资源。 前提条件 已完成GPU虚拟化资源准备。 如果您需要通过命令行创建,需要使用kubectl连接到集群,详情请参见通过kubectl连接集群。 约束与限制 单个GPU卡最多虚拟化成20个GPU虚拟设备。
T4 GPU设备显示异常 问题描述 使用NVIDIA Tesla T4 GPU的云服务器,例如Pi2或G6规格,执行nvidia-smi命令查看GPU使用情况时,显示如下: No devices were found 原因分析 NVIDIA Tesla T4 GPU是NVIDIA的新版本,默认使用并开启GSP
合适的NVIDIA驱动版本。 GPU驱动支持列表 当前GPU驱动支持列表仅针对1.2.28及以上版本的GPU插件。 如果您需要安装最新版本的GPU驱动,请将您的GPU插件升级到最新版本。 表1 GPU驱动支持列表 GPU型号 支持集群类型 机型规格 操作系统 Huawei Cloud
腾推理。 精度性能检查工具 Benchmark精度检查工具,可以转换模型后执行推理前,使用其对MindSpore Lite模型进行基准测试,它不仅可以对MindSpore Lite模型前向推理执行耗时进行定量分析(性能),还可以通过指定模型输出进行可对比的误差分析(精度)。 模型自动调优工具
模型转换,包含模型转换、优化和量化等。 应用集成。 针对转换的模型运行时应用层适配。 数据预处理。 模型编排。 模型裁剪。 精度校验。 精度对比误差统计工具。 自动化精度对比工具。 网络结构可视化工具。 性能调优。 性能测试。 性能调优三板斧。 性能分析与诊断。 迁移测试报告。 推理迁移验收表。
GPU推理业务迁移至昇腾的通用指导 简介 昇腾迁移快速入门案例 迁移评估 环境准备 模型适配 精度校验 性能调优 迁移过程使用工具概览 常见问题 父主题: GPU业务迁移至昇腾训练推理
基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型 概要 准备工作 导入和预处理训练数据集 创建和训练模型 使用模型
基于AIGC模型的GPU推理业务迁移至昇腾指导 场景介绍 迁移环境准备 pipeline应用准备 应用迁移 迁移效果校验 模型精度调优 性能调优 常见问题 父主题: GPU业务迁移至昇腾训练推理
GPU负载 使用Tensorflow训练神经网络 使用Nvidia-smi工具
GPU虚拟化概述 CCE GPU虚拟化采用自研xGPU虚拟化技术,能够动态对GPU设备显存与算力进行划分,单个GPU卡最多虚拟化成20个GPU虚拟设备。相对于静态分配来说,虚拟化的方案更加灵活,最大程度保证业务稳定的前提下,可以完全由用户自己定义使用的GPU量,提高GPU利用率。
性能调优 性能测试 benchmark工具也可用于性能测试,其主要的测试指标为模型单次前向推理的耗时。在性能测试任务中,与精度测试不同,并不需要用户指定对应的输入(inDataFile)和输出的标杆数据(benchmarkDataFile),benchmark工具会随机生成一个输
各个模型深度学习训练加速框架的选择 LlamaFactory框架使用两种训练框架: DeepSpeed和Accelerate都是针对深度学习训练加速的工具,但是它们的实现方式和应用场景有所不同。 DeepSpeed是一种深度学习加速框架,主要针对大规模模型和大规模数据集的训练。D
型完成简单的图像分类。 父主题: 基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型
本节操作介绍GPU云服务器安装Tesla驱动及CUDA工具包的操作步骤。 当前已支持使用自动化脚本安装GPU驱动,建议优先使用自动安装方式,脚本获取以及安装指导请参考(推荐)自动安装GPU加速型ECS的GPU驱动(Linux)和(推荐)自动安装GPU加速型ECS的GPU驱动(Windows)。
兼容Kubernetes默认GPU调度模式 开启GPU虚拟化后,默认该GPU节点不再支持使用Kubernetes默认GPU调度模式的工作负载,即不再支持使用nvidia.com/gpu资源的工作负载。如果您在集群中已使用nvidia.com/gpu资源的工作负载,可在gpu-device-p
选择GPU节点驱动版本 使用GPU加速型云服务器时,需要安装正确的Nvidia基础设施软件,才可以使用GPU实现计算加速功能。在使用GPU前,您需要根据GPU型号,选择兼容配套软件包并安装。 本文将介绍如何选择GPU节点的驱动版本及配套的CUDA Toolkit。 如何选择GPU节点驱动版本
GPU调度 GPU节点驱动版本 使用Kubernetes默认GPU调度 GPU虚拟化 监控GPU资源指标 基于GPU监控指标的工作负载弹性伸缩配置 GPU虚拟化节点弹性伸缩配置 GPU故障处理 父主题: 调度
昇腾规格 规格名称 描述 Ascend 1*ascend-snt9b|ARM 24核 192GB Snt9b单卡规格,配搭ARM处理器,适合深度学习场景下的模型训练和调测 ModelArts提供了面向推理迁移工作的预置镜像,其中包含了最新商用版驱动、昇腾软件开发库,迁移工具链等。预置