检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
准备GPU虚拟化资源 CCE GPU虚拟化采用自研xGPU虚拟化技术,能够动态对GPU设备显存与算力进行划分,单个GPU卡最多虚拟化成20个GPU虚拟设备。本文介绍如何在GPU节点上实现GPU的调度和隔离能力。 前提条件 配置 支持版本 集群版本 v1.23.8-r0、v1.25
基于AIGC模型的GPU推理业务迁移至昇腾指导 场景介绍 迁移环境准备 pipeline应用准备 应用迁移 迁移效果校验 模型精度调优 性能调优 常见问题 父主题: GPU业务迁移至昇腾训练推理
置。通过实现Scheduler提供的接口也可以方便灵活地进行定制化开发。 应用场景4:高精度资源调度 Volcano 在支持AI,大数据等作业的时候提供了高精度的资源调度策略,例如在深度学习场景下计算效率非常重要。以TensorFlow计算为例,配置“ps”和“worker”之间
etes默认GPU调度模式(支持使用nvidia.com/gpu资源的工作负载)。 在工作负载中声明nvidia.com/gpu资源(即配置nvidia.com/gpu为小数,例如0.5)时将通过虚拟化GPU提供,实现GPU显存隔离,按照设定值的百分比为容器分配GPU显存(例如分配0
" 迁移后应用出图效果相比GPU无法对齐怎么办? 扩散模型在噪音和随机数上的生成,本身就有一定的随机性,GPU和NPU(Ascend)硬件由于存在一定细小的差别,很难确保完全一致,较难达成生成图片100%匹配,建议通过盲测的方式对效果进行验证。 模型精度有问题怎么办? 首先考虑通
上报高精度日志接口参考 功能介绍 该接口用于主机上报租户日志给LTS。 接入点IP可在LTS控制台安装ICAgent的安装命令中获取,端口为8102,调用时使用该参数请参见请求示例。 每次上报的时候, 每条日志都必须带一个纳秒级的时间戳。在LTS界面查看日志的时候, 会按照时间戳
保证了较优的精度和性能。如果用户业务同样使用这些开源模型,建议直接使用ModelArts提供的模型运行指导,其余场景再考虑使用本指导自行迁移和调优。 迁移流程 模型迁移主要指将开源社区中实现过的模型或客户自研模型迁移到昇腾AI处理器上,需要保证模型已经在CPU/GPU上运行成功。
各个模型深度学习训练加速框架的选择 LlamaFactory框架使用两种训练框架: DeepSpeed和Accelerate都是针对深度学习训练加速的工具,但是它们的实现方式和应用场景有所不同。 DeepSpeed是一种深度学习加速框架,主要针对大规模模型和大规模数据集的训练。D
GPU虚拟化概述 CCE GPU虚拟化采用自研xGPU虚拟化技术,能够动态对GPU设备显存与算力进行划分,单个GPU卡最多虚拟化成20个GPU虚拟设备。相对于静态分配来说,虚拟化的方案更加灵活,最大程度保证业务稳定的前提下,可以完全由用户自己定义使用的GPU量,提高GPU利用率。
MindSpore Lite问题定位指南 在MindSpore Lite使用中遇到问题时,例如模型转换失败、训练后量化转换失败、模型推理失败、模型推理精度不理想、模型推理性能不理想、使用Visual Studio报错、使用Xcode构建APP报错等,您可以先查看日志信息进行定位分析。 多数场
卸载GPU加速型ECS的GPU驱动 操作场景 当GPU加速型云服务器需手动卸载GPU驱动时,可参考本文档进行操作。 GPU驱动卸载命令与GPU驱动的安装方式和操作系统类型相关,例如: Windows操作系统卸载驱动 Linux操作系统卸载驱动 Windows操作系统卸载驱动 以Windows
alloc()等。 受GPU虚拟化技术的限制,容器内应用程序初始化时,通过nvidia-smi监测工具监测到的实时算力可能超过容器可用的算力上限。 节点上开启了GPU虚拟化且有多张GPU卡时,如果GPU资源不足,不支持抢占其他Pod的GPU资源。 创建GPU虚拟化应用 通过控制台创建
置为GPU插件配置中指定的版本。 如果需要稳定升级GPU节点驱动,推荐使用通过节点池升级节点的GPU驱动版本。 前提条件 需要使用kubectl连接到集群,详情请参见通过kubectl连接集群。 操作步骤 如果您需要使用指定的NVIDIA驱动版本,可以在节点安装新版本GPU驱动,操作步骤如下:
本节操作介绍GPU云服务器安装Tesla驱动及CUDA工具包的操作步骤。 当前已支持使用自动化脚本安装GPU驱动,建议优先使用自动安装方式,脚本获取以及安装指导请参考(推荐)自动安装GPU加速型ECS的GPU驱动(Linux)和(推荐)自动安装GPU加速型ECS的GPU驱动(Windows)。
监控了哪些目标。 图2 查看监控目标 监控GPU指标 创建一个使用GPU的工作负载,等工作负载正常运行后,访问Prometheus,在“Graph”页面中,查看GPU指标。 关于GPU指标详情请参见GPU监控指标说明。 图3 查看GPU监控指标 访问Grafana Prometh
昇腾规格 规格名称 描述 Ascend 1*ascend-snt9b|ARM 24核 192GB Snt9b单卡规格,配搭ARM处理器,适合深度学习场景下的模型训练和调测 ModelArts提供了面向推理迁移工作的预置镜像,其中包含了最新商用版驱动、昇腾软件开发库,迁移工具链等。预置
使用SSH工具连接Notebook,服务器的进程被清理了,GPU使用率显示还是100% 原因是代码运行卡死导致被进程清理,GPU显存没有释放;或者代码运行过程中内存溢出导致程序被清理,需要释放下显存,清理GPU,然后重新启动。为了避免进程结束引起的代码未保存,建议您每隔一段时间保存下代码输出至OBS桶或者容器
例如:需要动态Shape,需要动态Shape的模型有ResNet-50、YOLOv5。 - 参数类型(FP32/FP16) FP32还是FP16混合,判断精度调优难度。 例如:ResNet-50、YOLOv5模型使用FP16。BertLarge使用FP32。 - 模型变更频率 模型变更场景如下:
8 KVM GPU加速型 各规格详细介绍请参见GPU加速型。 表54 GPU加速实例总览 类别 实例 GPU显卡 单卡Cuda Core数量 单卡GPU性能 使用场景 备注 图形加速型 G6v NVIDIA T4(vGPU虚拟化) 2560 8.1TFLOPS 单精度浮点计算 130INT8
"auto", "train_micro_batch_size_per_gpu": "auto", "wall_clock_breakdown": false } 父主题: 基于LLM模型的GPU训练业务迁移至昇腾指导