检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
如何避免非GPU/NPU负载调度到GPU/NPU节点? 问题现象 当集群中存在GPU/NPU节点和普通节点混合使用的场景时,普通工作负载也可以调度到GPU/NPU节点上,可能出现GPU/NPU资源未充分利用的情况。 问题原因 由于GPU/NPU节点同样提供CPU、内存资源,在一般
置。通过实现Scheduler提供的接口也可以方便灵活地进行定制化开发。 应用场景4:高精度资源调度 Volcano 在支持AI,大数据等作业的时候提供了高精度的资源调度策略,例如在深度学习场景下计算效率非常重要。以TensorFlow计算为例,配置“ps”和“worker”之间
name: 'cce-gpu' cce-gpu 结合CCE的GPU插件支持GPU资源分配,支持小数GPU配置。 说明: 1.10.5及以上版本的插件不再支持该插件,请使用xgpu插件。 小数GPU配置的前提条件为CCE集群GPU节点为共享模式,检查集群是否关闭GPU共享,请参见修改C
GPU插件检查异常处理 检查项内容 检查到本次升级涉及GPU插件,可能影响新建GPU节点时GPU驱动的安装。 解决方案 由于当前GPU插件的驱动配置由您自行配置,需要您验证两者的兼容性。建议您在测试环境验证安装升级目标版本的GPU插件,并配置当前GPU驱动后,测试创建节点是否正常使用。
CCE AI套件(NVIDIA GPU) 插件介绍 CCE AI套件(NVIDIA GPU)插件是支持在容器中使用GPU显卡的设备管理插件,集群中使用GPU节点时必须安装本插件。 字段说明 表1 参数描述 参数 是否必选 参数类型 描述 basic 是 object 插件基础配置参数。
云容器引擎CCE集群和gpu-beta插件推荐安装的NVIDIA GPU驱动,尚未出现在NVIDIA官方信息中。如果将来有新的官方信息变化,我们将及时跟进帮助您升级修复。 如果您是自行选择安装的NVIDIA GPU驱动或更新过节点上的GPU驱动,请参考上图确认您安装的GPU驱动是否受该漏洞影响。
使用dcgm-exporter监控GPU指标 应用场景 集群中包含GPU节点时,需要了解GPU应用使用节点GPU资源的情况,例如GPU利用率、显存使用量、GPU运行的温度、GPU的功率等。在获取GPU监控指标后,用户可根据应用的GPU指标配置弹性伸缩策略,或者根据GPU指标设置告警规则。本文基于开源Prometheus和DCGM
集群有4块GPU卡,TFJob1和TFJob2作业各自有4个Worker,TFJob1和TFJob2各自分配到2个GPU。但是TFJob1和TFJob2均需要4块GPU卡才能运行起来。这样TFJob1和TFJob2处于互相等待对方释放资源,这种死锁情况造成了GPU资源的浪费。 亲和调度问题
GPU节点使用nvidia驱动启动容器排查思路 集群中的节点是否有资源调度失败的事件? 问题现象: 节点运行正常且有GPU资源,但报如下失败信息: 0/9 nodes are aviable: 9 insufficient nvida.com/gpu 排查思路: 确认节点标签是否已经打上nvidia资源。
在GPU服务容器中发现一些新增的文件core.*,在以前的部署中没有出现过。 问题定位 GPU插件的驱动版本较低,单独下载驱动安装后正常。 工作负载中未声明需要gpu资源。 建议方案 节点安装了gpu-beta(gpu-device-plugin)插件后,会自动安装nvidia-s
如何查看Pod是否使用CPU绑核? 节点关机后Pod不重新调度 如何避免非GPU/NPU负载调度到GPU/NPU节点? 为什么Pod调度不到某个节点上? 修改kubelet参数导致已驱逐的Pod被重新调度 根据GPU/NPU卡信息定位使用该卡的Pod 父主题: 工作负载
GPU插件关键参数检查异常处理 检查项内容 检查CCE GPU插件中部分配置是否被侵入式修改,被侵入式修改的插件可能导致升级失败。 解决方案 使用kubectl连接集群。 执行以下命令获取插件实例详情。 kubectl get ds nvidia-driver-installer
Ubuntu内核与GPU驱动兼容性提醒 检查项内容 检查到集群中同时使用GPU插件和Ubuntu节点,提醒客户存在可能的兼容性问题。当Ubuntu内核版本在5.15.0-113-generic上时,GPU插件必须使用535.161.08及以上的驱动版本。 解决方案 您在升级后新创
适配OS Ubuntu22.04 GPU驱动目录自动挂载优化 1.2.24 v1.19 v1.21 v1.23 v1.25 节点池支持配置GPU驱动版本 支持GPU指标采集 1.2.20 v1.19 v1.21 v1.23 v1.25 设置插件别名为gpu 1.2.17 v1.15 v1
登录CCE控制台,在左侧导航栏中选择“节点管理”,切换至“节点”页签,查看GPU节点的IP。本文中以192.168.0.106为例。 登录GPU节点,通过以下命令查看GPU卡的信息。 nvidia-smi 可以看到该机器上存在1张卡GPU0。本文以GPU0为例,定位使用这张卡的Pod。 根据节点IP(即192
使用ASM实现灰度发布和蓝绿发布 应用服务网格(Application Service Mesh,简称ASM)是基于开源Istio推出的服务网格平台,它深度、无缝对接了企业级Kubernetes集群服务云容器引擎(CCE),在易用性、可靠性、可视化等方面进行了一系列增强,可为客户提供开箱即用的上手体验。
GPU/NPU Pod重建风险检查异常处理 检查项内容 检查当前集群升级重启kubelet时,节点上运行的GPU/NPU业务容器是否可能发生重建,造成业务影响。 解决方案 请确保在业务影响可控的前提下(如业务低峰期)进行集群升级,以消减业务容器重建带来的影响; 如需帮助,请您提交工单联系运维人员获取支持。
Volcano调度器 插件介绍 Volcano 是一个基于 Kubernetes 的批处理平台,提供了机器学习、深度学习、生物信息学、基因组学及其他大数据应用所需要的而 Kubernetes 当下缺失的一系列特性。 字段说明 表1 参数描述 参数 是否必选 参数类型 描述 basic
资源准备 在集群中添加GPU节点 登录CCE控制台,单击已创建的集群,进入集群控制台。 安装GPU插件。 在左侧导航栏中选择“插件管理”,在右侧找到gpu-beta(或gpu-device-plugin),单击“安装”。 在安装插件页面,设置插件关键参数。 Nvidia驱动:填写
Standard/CCE Turbo 集群显示名,用于在 CCE 界面显示,该名称创建后可修改 配置建议: 按照集群资源归属(如一般集群还是GPU集群)、应用场景(测试集群还是生产集群)等维度命名,方便区分和管理 计费模式 包年包月是预付费模式,按订单的购买周期计费,适用于可预估资源使用周期的场景,价格比按需计费模式更优惠。