检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
MindStudio-Insight性能可视化工具使用指导 对于高阶的调优用户,可以使用可视化工具MindStudio Insight查看profiling数据详情并分析可优化点,其提供了丰富的调优分析手段,可视化呈现真实软硬件运行数据,多维度分析性能瓶颈点,支持百卡、千卡及以上
如何查询显卡在位信息 如何查询NVIDIA的错误信息 如何查询XID报错信息 如何收集NVIDIA日志 如何查询内核信息 如何收集驱动安装信息 父主题: GPU实例故障自诊断
参数名 参数描述 XGBoost 学习率 控制权重更新的幅度,以及训练的速度和精度。取值范围为0~1的小数。 树数量 定义XGBoost算法中决策树的数量,一个样本的预测值是多棵树预测值的加权和。取值范围为1~50的整数。 树深度 定义每棵决策树的深度,根节点为第一层。取值范围为1~10的整数。
基于ModelArts Standard运行GPU训练作业 在ModelArts Standard上运行GPU训练作业的场景介绍 在ModelArts Standard运行GPU训练作业的准备工作 在ModelArts Standard上运行GPU单机单卡训练作业 在ModelArts
在ModelArts自动学习中,如何进行增量训练? 在自动学习项目中,每训练一次,将自动产生一个训练版本。当前一次的训练结果不满意时(如对训练精度不满意),您可以适当增加高质量的数据,或者增减标签,然后再次进行训练。 增量训练目前仅支持“图像分类”、“物体检测”、“声音分类”类型的自动学习项目。
4字节 -2147483648~2147483647 是 是 STRING 字符串 - - 是 是 FLOAT 单精度浮点型 4字节 - 是 是 DOUBLE 双精度浮点型 8字节 - 是 是 DECIMAL(precision,scale) 10进制精确数字类型。固定有效位数和小数位数的数据类型,例如:3
仅在没有数据丢失的情况下支持将Decimal数据类型从较低精度更改为较高精度 例如: 无效场景:将Decimal数据精度从(10,2)更改为(10,5)无效,因为在这种情况下,只有scale增加,但总位数保持不变。 有效场景:将Decimal数据精度从(10,2)更改为(12,3)有效,因为总
操作系统监控GPU页面显示无记录该如何处理? 在查看主机监控的监控指标时,如果出现操作系统监控GPU页面显示无记录的问题,请先确认您的机器是否支持GPU。若您的机器支持GPU且驱动运行正常,请参考以下操作步骤升级插件为增强版: 卸载当前基础版Agent: Linux平台:登录机器执行命令
面。 执行如下命令查看GPU使用情况。 nvidia-smi 查看当前Notebook实例中有哪些进程使用GPU。 方法一: python /modelarts/tools/gpu_processes.py 如果当前进程使用GPU 如果当前没有进程使用GPU 方法二: 打开文件“
仅在没有数据丢失的情况下支持将Decimal数据类型从较低精度更改为较高精度 例如: 无效场景:将Decimal数据精度从(10,2)更改为(10,5)无效,因为在这种情况下,只有scale增加,但总位数保持不变。 有效场景:将Decimal数据精度从(10,2)更改为(12,3)有效,因为总
登录CCE控制台,在左侧导航栏中选择“节点管理”,切换至“节点”页签,查看GPU节点的IP。本文中以192.168.0.106为例。 登录GPU节点,通过以下命令查看GPU卡的信息。 nvidia-smi 可以看到该机器上存在1张卡GPU0。本文以GPU0为例,定位使用这张卡的Pod。 根据节点IP(即192
迭代次数(iterations)和收敛精度(convergence)。 算法终止的条件:要么达到设置的最大迭代次数,要么满足收敛精度,满足其一即可。 一般来说,收敛精度设置得越小,迭代次数设置得越大,算法的效果越好。 在固定收敛精度的情况下,要想算法优先满足收敛精度,迭代次数设置得尽量大。
Ubuntu内核与GPU驱动兼容性提醒 检查项内容 检查到集群中同时使用GPU插件和Ubuntu节点,提醒客户存在可能的兼容性问题。当Ubuntu内核版本在5.15.0-113-generic上时,GPU插件必须使用535.161.08及以上的驱动版本。 解决方案 您在升级后新创
使用W8A16的量化不仅可以保证精度在可接受的范围内,同时也有一定的性能收益。 约束限制 只支持GPTQ W8A16 perchannel量化,只支持desc_act=false。 GPTQ W8A16量化支持的模型请参见支持的模型列表。 步骤一:量化模型权重 在GPU的机器上使用开源GPTQ量化工具GPTQ
如何查看Pod是否使用CPU绑核? 节点关机后Pod不重新调度 如何避免非GPU/NPU负载调度到GPU/NPU节点? 为什么Pod调度不到某个节点上? 修改kubelet参数导致已驱逐的Pod被重新调度 根据GPU/NPU卡信息定位使用该卡的Pod 节点标签更新导致的Pod容器退出问题
适配OS Ubuntu22.04 GPU驱动目录自动挂载优化 1.2.24 v1.19 v1.21 v1.23 v1.25 节点池支持配置GPU驱动版本 支持GPU指标采集 1.2.20 v1.19 v1.21 v1.23 v1.25 设置插件别名为gpu 1.2.17 v1.15 v1
为什么exec进入容器后执行GPU相关的操作报错? 问题现象: exec进入容器后执行GPU相关的操作(例如nvidia-smi、使用tensorflow运行GPU训练任务等)报错“cannot open shared object file: No such file or directory”。
权重将默认为“1” 说明: 边上权重应大于0。 weight 关于迭代次数(iterations)和收敛精度(convergence)参数如何调节,请参考迭代次数和收敛精度的关系。 表2 reponse_data参数说明 参数 类型 说明 modularity Double 模块度。