检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
在ModelArts Standard运行GPU训练作业的准备工作 使用ModelArts Standard的专属资源池训练时,需要完成以下准备工作。 购买服务资源 表1 购买服务资源 服务 使用说明 参考文档 弹性文件服务SFS 弹性文件服务默认为按需计费,即按购买的存储容量和
gpu-device-plugin 插件简介 gpu-device-plugin插件是支持在容器中使用GPU显卡的设备管理插件,集群中使用GPU节点时必须安装本插件。 约束与限制 下载的驱动必须是后缀为“.run”的文件。 仅支持Nvidia Tesla驱动,不支持GRID驱动。
C++调用CANN层接口Ascend Computing Language(AscendCL)调用一个或几个亲和算子组合的形式,代替原有GPU的实现方式,具体逻辑模型请参考PyTorch自动迁移。 在PyTorch模型迁移后进行训练的过程中,CPU只负责算子的下发,而NPU负责算
使用dcgm-exporter监控GPU指标 应用场景 集群中包含GPU节点时,需要了解GPU应用使用节点GPU资源的情况,例如GPU利用率、显存使用量、GPU运行的温度、GPU的功率等。在获取GPU监控指标后,用户可根据应用的GPU指标配置弹性伸缩策略,或者根据GPU指标设置告警规则。本文基于开源Prometheus和DCGM
install -r requirements.txt && /bin/sh run.sh 资源池:在“专属资源池”页签选择GPU规格的专属资源池。 规格:选择所需GPU规格。 计算节点个数:选择需要的节点个数。 SFS Turbo:增加挂载配置,选择SFS名称,云上挂载路径为“/home/ma-user/work”。
使用W8A16的量化不仅可以保证精度在可接受的范围内,同时也有一定的性能收益。 约束限制 只支持GPTQ W8A16 perchannel量化,只支持desc_act=false。 GPTQ W8A16量化支持的模型请参见支持的模型列表。 步骤一:量化模型权重 在GPU的机器上使用开源GPTQ量化工具GPTQ
测确定性问题,使用训练状态监控工具监控NPU训练过程中的确定性计算问题。 将两份梯度数据进行相似度对比。在有标杆问题中,可以确认训练过程中精度问题出现的Step,以及抓取反向过程中的问题。 使用步骤如下: 通过pip安装msprobe工具。 # shell pip install
0 到 1 制作自定义镜像并用于训练(PyTorch+CPU/GPU) 本章节介绍如何从0到1制作镜像,并使用该镜像在ModelArts平台上进行训练。镜像中使用的AI引擎是PyTorch,训练使用的资源是CPU或GPU。 本实践教程仅适用于新版训练作业。 场景描述 本示例使用Linux
日志提示Compile graph failed 问题现象 日志提示:Compile graph failed。 图1 报错提示 原因分析 模型转换时未指定Ascend后端。 处理方法 需要在模型转换阶段指定“--device=Ascend”。 父主题: 常见问题
inv_freq = self.inv_freq.npu() 问题7:使用Qwen2-7B、Qwen2-72B模型有精度问题,重复输出感叹号 检查【配置环境变量】章节中,高精度模式的环境变量是否开启。 父主题: 主流开源大模型基于Lite Server适配PyTorch NPU推理指导(6
inv_freq = self.inv_freq.npu() 问题7:使用Qwen2-7B、Qwen2-72B模型有精度问题,重复输出感叹号 检查【配置环境变量】章节中,高精度模式的环境变量是否开启 父主题: 主流开源大模型基于Lite Cluster适配PyTorch NPU推理指导(6
迭代次数(iterations)和收敛精度(convergence)。 算法终止的条件:要么达到设置的最大迭代次数,要么满足收敛精度,满足其一即可。 一般来说,收敛精度设置得越小,迭代次数设置得越大,算法的效果越好。 在固定收敛精度的情况下,要想算法优先满足收敛精度,迭代次数设置得尽量大。
实现参数A与参数B的除法运算,C为精度值。其中,参数A、B、C支持以下类型: 数字 局部参数 二元运算 -不带精度值除法运算,能除尽,则为除尽后的保留位数,不能除尽,默认保留6位小数,四舍五入规则。 -带精度的除法运算,精度值范围为大于1小于6包括边界值的整数。若能除尽,除尽后小数位数不超过精度值则按照原
GPU实例故障自诊断 GPU实例故障,如果已安装GPU监控的CES Agent,当GPU服务器出现异常时则会产生事件通知,可以及时发现问题避免造成用户损失。如果没有安装CES Agent,只能依赖用户对故障的监控情况,发现故障后及时联系技术支持处理。 GPU实例故障处理流程 GPU实例故障分类列表
使用W8A16的量化不仅可以保证精度在可接受的范围内,同时也有一定的性能收益。 约束限制 只支持GPTQ W8A16 perchannel量化,只支持desc_act=false。 GPTQ W8A16量化支持的模型请参见支持的模型列表。 步骤一:量化模型权重 在GPU的机器上使用开源GPTQ量化工具GPTQ
当前版本使用GPTQ量化仅支持W8A16 perchannel的量化形式,使用W8A16的量化不仅可以保证精度在可接受的范围内,同时也有一定的性能收益。 GPTQ W8A16量化支持的模型请参见表1。 本章节介绍如何在GPU的机器上使用开源GPTQ量化工具GPTQ (huggingface.co)量化模型
当前版本使用GPTQ量化仅支持W8A16 perchannel的量化形式,使用W8A16的量化不仅可以保证精度在可接受的范围内,同时也有一定的性能收益。 GPTQ W8A16量化支持的模型请参见表3。 本章节介绍如何在GPU的机器上使用开源GPTQ量化工具GPTQ (huggingface.co)量化模型
当前版本使用GPTQ量化仅支持W8A16 perchannel的量化形式,使用W8A16的量化不仅可以保证精度在可接受的范围内,同时也有一定的性能收益。 GPTQ W8A16量化支持的模型请参见支持的模型列表和权重文件。 本章节介绍如何在GPU的机器上使用开源GPTQ量化工具GPTQ (huggingface.co
当前版本使用GPTQ量化仅支持W8A16 perchannel的量化形式,使用W8A16的量化不仅可以保证精度在可接受的范围内,同时也有一定的性能收益。 GPTQ W8A16量化支持的模型请参见支持的模型列表和权重文件。 本章节介绍如何在GPU的机器上使用开源GPTQ量化工具GPTQ (huggingface.co
有对应属性时,权重将默认为“1”。 说明: 边上权重应大于0。 关于迭代次数(iterations)和收敛精度(convergence)参数如何调节,请参考迭代次数和收敛精度的关系。 表2 response_data参数说明 参数 类型 说明 source String - personalrank