检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
和中划线的名称。 workspace_id String 指定作业所处的工作空间,默认值为“0”。 description String 对训练作业的描述,默认为“NULL”,字符串的长度限制为[0, 256]。 create_time Long 训练作业创建时间戳,单位为毫秒,
据标注”页签中添加图片并进行标注,重新进行模型训练及模型部署。预测结果中的参数说明请参见表1。如果您对模型预测结果满意,可根据界面提示调用接口访问在线服务。 目前只支持jpg、jpeg、bmp、png格式的图片。 表1 预测结果中的参数说明 参数 说明 detection_classes
据标注”页签中添加数据并进行标注,重新进行模型训练及模型部署。预测结果中的参数说明请参见表1。如果您对模型预测结果满意,可根据界面提示调用接口访问在线服务。 表1 预测结果中的参数说明 参数 说明 predicted_label 该段文本的预测类别。 score 预测为此类别的置信度。
101 Switching Protocols 切换协议。只能切换到更高级的协议。 例如,切换到HTTP的新版本协议。 200 OK 接口调用成功。 201 Created 创建类的请求完全成功。 202 Accepted 已经接受请求,但未处理完成。 203 Non-Authoritative
_JOB_DIR}/demo-code”目录中,“demo-code”为存放代码目录的最后一级OBS目录。例如,“代码目录”选择的是“/test/code”,则训练代码文件会被下载到训练容器的“${MA_JOB_DIR}/code”目录中。 运行用户ID 容器运行时的用户ID,该
和中划线的名称。 workspace_id String 指定作业所处的工作空间,默认值为“0”。 description String 对训练作业的描述,默认为“NULL”,字符串的长度限制为[0, 256]。 create_time Long 训练作业创建时间戳,单位为毫秒,
xx为Grafana的所在宿主机的IP地址 图1 Prometheus 在HTTP的URL输入框中输入Prometheus的IP地址和端口号,单击Save&Test: 图2 IP地址和端口号 至此,指标监控方案安装完成。指标监控效果展示如下: 图3 指标监控效果 这里使用的是Grafana最基本的功
文件将数据集转换为share gpt格式。 python convert_to_sharegpt.py \ --input_file_path data_test.json \ --out_file_name ./data_for_sharegpt.json \ --prefix_name instruction
文件将数据集转换为share gpt格式。 python convert_to_sharegpt.py \ --input_file_path data_test.json \ --out_file_name ./data_for_sharegpt.json \ --prefix_name instruction
元模型来源:选择“从对象存储服务(OBS)中选择”。 选择元模型:从OBS中选择一个模型包。 AI引擎:选择“Custom”。 引擎包:从容器镜像中选择一个镜像。 容器调用接口:端口和协议可根据镜像实际使用情况自行填写。 其他参数保持默认值。 单击“立即创建”,跳转到模型列表页,查看模型状态,当状态变为“正常”,模型创建成功。
的数据集,配套算法也是比较简单的用于教学的神经网络算法。这样的数据和算法生成的模型仅适用于教学模式,并不能应对复杂的预测场景。即生成的模型对预测图片有一定范围和要求,预测图片必须和训练集中的图片相似(黑底白字)才可能预测准确。 图8 示例图片 图9 预测结果展示 Step7 清除资源
acceptSamples 给样本添加标签 dataset updateSamples 发送邮件给团队标注任务的成员 dataset sendEmails 接口人启动团队标注任务 dataset startWorkforceTask 更新团队标注任务 dataset updateWorkforceTask
执行convert_to_sharegpt.py 文件。 python convert_to_sharegpt.py \ --input_file_path data_test.json \ --out_file_name ./data_for_sharegpt.json \ --prefix_name instruction
执行convert_to_sharegpt.py 文件。 python convert_to_sharegpt.py \ --input_file_path data_test.json \ --out_file_name ./data_for_sharegpt.json \ --prefix_name instruction
执行convert_to_sharegpt.py 文件。 python convert_to_sharegpt.py \ --input_file_path data_test.json \ --out_file_name ./data_for_sharegpt.json \ --prefix_name instruction
使用AOM查看Lite Cluster监控指标 ModelArts Lite Cluster会定期收集资源池中各节点的关键资源(GPU、NPU、CPU、Memory等)的使用情况并上报到AOM,用户可直接在AOM上查看默认配置好的基础指标,也支持用户自定义一些指标项上报到AOM查看。
benchmark_parallel.csv 参数说明 --backend:服务类型,支持tgi、vllm、mindspore、openai等。本文档使用的推理接口是vllm。 --host ${docker_ip}:服务部署的IP地址,${docker_ip}替换为宿主机实际的IP地址。 --port:推理服务端口8080。
com/deep-learning/pytorch:2.1.0-cann7.0.0 代码目录:设置为OBS中存放启动脚本文件的目录,例如:“obs://test-modelarts/pytorch/demo-code/”,训练代码会被自动下载至训练容器的“${MA_JOB_DIR}/demo-c
署能力。本案例将指导用户完成原生第三方推理框架镜像到ModelArts推理自定义引擎的改造。自定义引擎的镜像制作完成后,即可以通过模型导入对模型版本进行管理,并基于模型进行部署和管理服务。 适配和改造的主要工作项如下: 图1 改造工作项 针对不同框架的镜像,可能还需要做额外的适配工作,具体差异请见对应框架的操作步骤。
发送请求的模块,在这里修改请求响应。目前支持vllm.openai,atb的tgi模板 ├── ... ├── eval_test.py # 启动脚本,建立线程池发送请求,并汇总结果 ├── service_predict.py # 发送请求