检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
练结果不满意时(如对训练精度不满意),您可以适当增加高质量的数据,或者增减标签,然后再次进行训练。 增量训练目前仅支持“图像分类”、“物体检测”、“声音分类”类型的自动学习项目。 为提升训练效果,建议在增量训练时,选择质量较高的数据,提升数据标注的质量。 增量训练的操作步骤 登录
的数据集可直接在ModelArts控制台数据集列表中显示。 目前只有“图像分类”、“物体检测”、“图像分割”类型的数据集支持导出功能。 “图像分类”只支持导出txt格式的标注文件。 “物体检测”只支持导出Pascal VOC格式的XML标注文件。 “图像分割”只支持导出Pascal
层梯度信息进行监控,目前支持两种能力: 将模型权重的梯度数据导出。这种功能可以将模型权重的梯度值以统计量的形式采集出来,用以分析问题,例如检测确定性问题,使用训练状态监控工具监控NPU训练过程中的确定性计算问题。 将两份梯度数据进行相似度对比。在有标杆问题中,可以确认训练过程中精
如何关闭Mox的warmup 问题现象 训练作业mox的Tensorflow版本在运行的时候,会先执行“50steps” 4次,然后才会开始正式运行。 warmup即先用一个小的学习率训练几个epoch(warmup),由于网络的参数是随机初始化的,如果一开始就采用较大的学习率会出现数值不稳定的问题,这是使用warm
模型训练、模型评估等场景。主要应用场景如下: 当需要对图像进行增强,对语音进行除噪等操作时,可以使用该节点进行数据的预处理。 对于一些物体检测,图像分类等模型场景,可以根据已有的数据使用该节点进行模型的训练。 属性总览 您可以使用JobStep来构建作业类型节点,JobStep结构如下
只有“图片”的数据集,且版本标注类型为“物体检测”和“图像分类”的数据集版本支持数据特征分析。 只有发布后的数据集支持数据特征分析。发布后的Default格式数据集版本支持数据特征分析。 数据特征分析的数据范围,不同类型的数据集,选取范围不同: 对于标注任务类型为“物体检测”的数据集版本,当已标注样
内置属性:标签展示的颜色,为色彩的16进制代码,默认为空。例如:“#FFFFF0”。 @modelarts:default_shape String 内置属性:物体检测标签的默认形状(物体检测标签专用属性),默认为空。可选值如下: bndbox:矩形。 polygon:多边形。 circle:圆形。 line:直线。
内置属性:标签展示的颜色,为色彩的16进制代码,默认为空。例如:“#FFFFF0”。 @modelarts:default_shape String 内置属性:物体检测标签的默认形状(物体检测标签专用属性),默认为空。可选值如下: bndbox:矩形。 polygon:多边形。 circle:圆形。 line:直线。
在ModelArts数据集中添加图片对图片大小有限制吗? 在数据管理功能中,针对“物体检测”或“图像分类”的数据集,在数据集中上传更多的图片时,是有限制的。要求单张图片大小不超过8MB,且只支持JPG、JPEG、PNG和BMP四种格式的图片。 请注意,针对自动学习功能中的添加图片
针对不同类型的自动学习项目,训练作业对数据集的要求如下。 图像分类:用于训练的图片,至少有2种以上的分类(即2种以上的标签),每种分类的图片数不少于5张。 物体检测:用于训练的图片,至少有1种以上的分类(即1种以上的标签),每种分类的图片数不少于5张。 预测分析:由于预测分析任务的数据集不在数据管理中
参数类型 描述 check_running_task 否 Boolean 是否检测数据集中正在运行(包括初始化)的任务。可选值如下: true:检测数据集中正在运行(包括初始化)的任务 false:不检测数据集中正在运行的任务(默认值) contain_versions 否 Boolean
启删除锁。 关闭删除锁:单击操作列的“更多>关闭删除锁”,在对话框中确认即将关闭删除锁的节点信息,确认完后在文本框输入“YES”,单击“确定”,即可对节点关闭删除锁。 如果想批量对多个节点关闭删除锁,勾选待关闭删除锁的节点名称前的复选框,然后单击名称上方的“更多>关闭删除锁”,即可关闭多个节点的删除锁。
当前ModelArts支持如下格式的数据集。 图片:对图像类数据进行处理,支持 .jpg、.png、.jpeg、.bmp四种图像格式,支持用户进行图像分类、物体检测、图像分割类型的标注。 音频:对音频类数据进行处理,支持.wav格式,支持用户进行声音分类、语音内容、语音分割三种类型的标注。 文本:对文本类数据进行处理,支持
在标注作业列表中,选择“物体检测”或“图像分类”类型的标注作业,单击标注作业名称进入“标注作业详情”。 在“标注作业详情页”,选择“待确认”页签,查看并确认难例。 只有当智能标注任务完成后,待确认页签才会显示标注数据。否则,此页签内容为空。智能标注操作请参见创建智能标注作业。 针对“物体检测”标注作业
成新的数据集。用户可以通过任务历史查看数据导出的历史记录。 目前只有“图像分类”、“物体检测”、“图像分割”类型的数据集支持导出功能。 “图像分类”只支持导出txt格式的标注文件。 “物体检测”只支持导出Pascal VOC格式的XML标注文件。 “图像分割”只支持导出Pascal
目前只有“图像分类”和“物体检测”类型的数据集支持智能标注功能。 团队标注 数据标注任务中,一般由一个人完成,但是针对数据集较大时,需要多人协助完成。ModelArts提供了团队标注功能,可以由多人组成一个标注团队,针对同一个数据集进行标注管理。 团队标注功能当前仅支持“图像分类”、“物体检测”、“文
sh安装命令或使用Dockerfile构建镜像时,如遇到git下载代码出现以下类似的报错信息,关闭git验证即可。 报错信息: fatal: unable to access 'https://gitee.com/ascend/ModelLink.git/': error setting
代码,默认为空。例如:“#FFFFF0”。 @modelarts:default_shape 否 String 内置属性:物体检测标签的默认形状(物体检测标签专用属性),默认为空。可选值如下: bndbox:矩形。 polygon:多边形。 circle:圆形。 line:直线。
计算节点个数 默认为1。您可以根据您的实际情况选择,最大为5。 针对“物体检测”类型的标注作业,选择“主动学习”时,只支持识别和标注矩形框。 图1 启动智能标注(图像分类) 图2 启动智能标注(物体检测) 图3 启动智能标注(预标注) 完成参数设置后,单击“提交”,即可启动智能标注。
因系统无法核实代码逻辑且检测存在周期性,卡死检测存在一定的误报概率,开启开关即表示接受误报率。为了避免无效重启浪费算力资源,系统最多只支持连续作业卡死重启3次。 完成更多配置。 表7 更多配置 参数名称 说明 事件通知 选择是否启用训练作业的事件通知。 开关关闭(默认关闭):表示不启用消息通知服务。