检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
valid number is 0. 原因分析 该日志表示数据集中的有效样本量为0,可能有如下原因: 数据未标注。 标注的数据是不符合规格的(如目标检测算法要求标注为矩形框,但是提供数据标注为非矩形框)。 处理方法 请您检查数据是否已标注,或检查数据标注是否符合算法要求。 父主题: 预置算法运行故障
ModelArts Standard数据管理提供了一套高效便捷的管理和标注数据框架。支持图片、文本、语音、视频等多种数据类型,涵盖图像分类、目标检测、音频分割、文本分类等多个标注场景,适用于计算机视觉、自然语言处理、音视频分析等AI项目场景。 ModelArts Standard数据管
场景一:环境预检测失败、硬件检测出现故障,系统隔离所有故障节点并重新下发训练作业。 图1 预检失败&硬件故障 场景二:环境预检测失败、硬件无故障,系统随机再分配节点并重新下发训练作业。 图2 预检失败&硬件正常 场景三:环境预检测成功并进入用户业务阶段,硬件检测出现故障并且用户
以下三种探针: 启动探针:用于检测应用实例是否已经启动。如果提供了启动探针(startup probe),则禁用所有其他探针,直到它成功为止。如果启动探针失败,将会重启实例。如果没有提供启动探针,则默认状态为成功Success。 就绪探针:用于检测应用实例是否已经准备好接收流量。
数据集如何切分 在发布数据集时,仅“图像分类”、“物体检测”、“文本分类”和“声音分类”类型数据集支持进行数据切分功能。 一般默认不启用该功能。启用后,需设置对应的训练验证比例。 输入“训练集比例”,数值只能是0~1区间内的数。设置好“训练集比例”后,“验证集比例”自动填充。“训练集比例”加“验证集比例”等于1。
异比较大,可以使用fp32精度模式提升模型的精度(精度模式并不总是需要使用fp32,因为相对于fp16,fp32的性能较差。因此,通常只在检测到某个模型精度存在问题时,才会考虑是否使用fp32进行尝试)。使用fp32精度模式的配置文件如下: 配置文件: # config.ini [ascend_context]
如何将某些图片划分到验证集或者训练集? 目前只能指定切分比例,随机将样本划分到训练集或者验证集,不支持指定。 切分比例的指定: 在发布数据集时,仅“图像分类”、“物体检测”、“文本分类”和“声音分类”类型数据集支持进行数据切分功能。 一般默认不启用该功能。启用后,需设置对应的训练验证比例。 输入“训练集比例
只支持JPG、JPEG、PNG、BMP格式的图片。单张图片大小不能超过5MB,且单次上传的图片总大小不能超过8MB。 物体检测 支持两种格式: ModelArts PASCAL VOC 1.0 物体检测的简易模式要求用户将标注对象和标注文件存储在同一目录,并且一一对应,如标注对象文件名为“IMG_20180919_114745
Gallery中的数据集,可以设置是否公开,将数据集公开给其他人使用。 目前只有“图像分类”、“物体检测”、“图像分割”类型的数据集支持导出功能。 “图像分类”只支持导出txt格式的标注文件。 “物体检测”只支持导出Pascal VOC格式的XML标注文件。 “图像分割”只支持导出Pascal
/home/ma-user -m -u 1000 -g 100 -s /bin/bash ma-user 通过增加nginx代理,支持https协议。 协议转换为https之后,对外暴露的端口从tfserving的8501变为8080。 Dockerfile中执行如下命令完成nginx的安装和配置。
已标注数据格式规范:图像分类 支持 可以导入未标注或已标注数据 已标注数据格式规范:图像分类 物体检测 支持 可以导入未标注或已标注数据 已标注数据格式规范:物体检测 支持 可以导入未标注或已标注数据 已标注数据格式规范:物体检测 图像分割 支持 可以导入未标注或已标注数据 已标注数据格式规范:图像分割
练结果不满意时(如对训练精度不满意),您可以适当增加高质量的数据,或者增减标签,然后再次进行训练。 增量训练目前仅支持“图像分类”、“物体检测”、“声音分类”类型的自动学习项目。 为提升训练效果,建议在增量训练时,选择质量较高的数据,提升数据标注的质量。 增量训练的操作步骤 登录
的数据集可直接在ModelArts控制台数据集列表中显示。 目前只有“图像分类”、“物体检测”、“图像分割”类型的数据集支持导出功能。 “图像分类”只支持导出txt格式的标注文件。 “物体检测”只支持导出Pascal VOC格式的XML标注文件。 “图像分割”只支持导出Pascal
层梯度信息进行监控,目前支持两种能力: 将模型权重的梯度数据导出。这种功能可以将模型权重的梯度值以统计量的形式采集出来,用以分析问题,例如检测确定性问题,使用训练状态监控工具监控NPU训练过程中的确定性计算问题。 将两份梯度数据进行相似度对比。在有标杆问题中,可以确认训练过程中精
如何关闭Mox的warmup 问题现象 训练作业mox的Tensorflow版本在运行的时候,会先执行“50steps” 4次,然后才会开始正式运行。 warmup即先用一个小的学习率训练几个epoch(warmup),由于网络的参数是随机初始化的,如果一开始就采用较大的学习率会出现数值不稳定的问题,这是使用warm
团队标注功能仅在以下Region支持:华北-北京四、华北-北京一、华东-上海一、华南-广州、中国-香港、亚太-新加坡、亚太-曼谷。 团队标注功能当前仅支持“图像分类”、“物体检测”、“文本分类”、“命名实体”、“文本三元组”、“语音分割”类型的数据集。 针对启用团队标注功能的数据标注任务,支持创建团队标注任务,将标
设置在线服务故障自动重启 场景描述 当系统检测到Snt9b硬件故障时,自动复位Snt9B芯片并重启推理在线服务,提升了推理在线服务的恢复速度。 约束限制 仅支持使用Snt9b资源的同步在线服务。 只支持针对整节点资源复位,请确保部署的在线服务为8*N卡规格,请谨慎评估对部署在该节点的其他服务的影响。
内置属性:标签展示的颜色,为色彩的16进制代码,默认为空。例如:“#FFFFF0”。 @modelarts:default_shape String 内置属性:物体检测标签的默认形状(物体检测标签专用属性),默认为空。可选值如下: bndbox:矩形。 polygon:多边形。 circle:圆形。 line:直线。
添加图片时,图片大小有限制吗? 在数据管理功能中,针对“物体检测”或“图像分类”的数据集,在数据集中上传更多的图片时,是有限制的。要求单张图片大小不超过8MB,且只支持JPG、JPEG、PNG和BMP四种格式的图片。 请注意,针对自动学习功能中的添加图片,其图片大小限制不同,要求上传的图片大小不超过5MB。
内置属性:标签展示的颜色,为色彩的16进制代码,默认为空。例如:“#FFFFF0”。 @modelarts:default_shape String 内置属性:物体检测标签的默认形状(物体检测标签专用属性),默认为空。可选值如下: bndbox:矩形。 polygon:多边形。 circle:圆形。 line:直线。