检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
在构建镜像的dockerfile文件中安装pip依赖包,例如安装Flask依赖包。 # 配置华为云的源,安装 python、python3-pip 和 Flask RUN cp -a /etc/apt/sources.list /etc/apt/sources.list.bak && \
自如何获取ModelArts训练容器中的文件实际路径? ModelArts训练中不同规格资源“/cache”目录的大小是多少? ModelArts训练作业为什么存在/work和/ma-user两种超参目录? 如何查看ModelArts训练作业资源占用情况? 如何将在ModelArts中训练好的模型下载或迁移到其他账号?
资源池ID、资源池的状态、节点状态、资源池类型、创建时间搜索。 在资源池列表中,单击某一资源池名称,进入资源池详情页,查看资源池的基本信息和其他扩展信息。 对于Standard资源池,当创建了多个资源池时,可在详情页单击左上角,可切换资源池。 对于按需计费的Standard资源池
接重启Notebook实例。重启后多种配置重置,会导致用户数据丢弃,环境丢失,造成很不好的使用体验。因此需要提供cache盘使用情况的监控和告警,并将数据上报至AOM平台。 配置流程 填写告警基本信息 设置告警规则 监控对象指标配置 告警触发条件设置 告警通知设置 创建主题、设置主题策略、订阅主题
针对文本分类的自动学习项目,项目创建成功后,您可以根据业务变化,修改用于标注的标签。支持添加、修改和删除标签。 添加标签 在“未标注”页签下,单击“标签集”右侧的加号,在弹出“新增标签”对话框中,设置“标签名称”和“标签颜色”,然后单击“确定”完成标签添加。 修改标签 在“已标注”页签中“全部标
进入资源池详情页,在节点管理页面,选择需要进行驱动升级的节点,单击操作列的“更多 > 驱动升级”。 在“驱动升级”弹窗中,会显示当前专属资源池节点的名称ID、规格和驱动版本号,选择节点待升级的“升级版本”。 单击“确定”,开始升级单个节点的驱动。 父主题: Lite Cluster资源管理
解决方案 找到.ssh文件夹。一般位于“C:\Users”,例如“C:\Users\xxx”。 “C:\Users”目录下的文件名必须和Windows登录用户名完全一致。 右键单击.ssh文件夹,选择“属性”。然后单击“安全”页签。 单击“高级”,在弹出的高级安全设置界面单击“禁用继承”,
org上查询依赖的待安装包是否存在,如果不存在则建议使用whl包进行安装(将待安装的whl包放到模型所在的OBS目录下)。 查看待安装包的安装限制和前置依赖等,排查是否满足相关要求。 如果包有依赖关系,请参考导入模型时,模型配置文件中的安装包依赖参数如何编写?章节配置包的先后依赖关系。 父主题:
未知系统问题导致,建议先尝试重建作业,重建后仍然失败,建议提工单定位。 处理方法 如果存在之前能跑通,什么都没修改,过了一阵跑不通的情况,先去排查跑通和跑不通的日志是否存在pip源更新了依赖包,如下图,安装之前跑通的老版本即可。 图1 PIP安装对比图 推荐您使用本地Pycharm远程连接Notebook调试。
步骤一:下载ModelArts SDK 步骤二:配置运行环境 步骤三:安装ModelArts SDK ModelArts SDK支持安装在Windows和Linux操作系统中。 如果在Windows上安装ModelArts SDK时出现报错,可参见FAQ:安装ModelArts SDK报错处理报错。
完成的数据在进行模型训练后,训练结果为图片异常。针对不同的异常情况说明及解决方案参见表1。 表1 自动学习训练中图片异常情况说明(图像分类和物体检测) 序号 图片异常显示字段 图片异常说明 解决方案字段 解决方案说明 1 load failed 图片无法被解码且不能修复 ignore
ud_patch/models/falcon2 复制config.json文件至加载的权重文件/tokenizer目录下,参考路径上传代码和权重文件到工作环境中的步骤3。 cp -f config.json {work_dir}/model/falcon-11B/ glm4-9b模型
在数据标注页面,单击未标注页签,在此页面中,您可以单击添加图片,或者增删标签。 如果增加了图片,您需要对增加的图片进行重新标注。如果您增删标签,建议对所有的图片进行排查和重新标注。对已标注的数据, 也需要检查是否需要增加新的标签。 在图片都标注完成后,单击右上角“开始训练”,在“训练设置”中,在“增量训练版本
d_patch/models/falcon2/ 复制config.json文件至加载的权重文件/tokenizer目录下,参考路径上传代码和权重文件到工作环境中的步骤3。 cp -f config.json {work_dir}/tokenizers/falcon-11B/ glm4-9b模型
使用量化模型 使用量化模型需要在NPU的机器上运行。 启动vLLM前,请开启图模式(参考步骤六 启动推理服务中的配置环境变量),启动服务的命令和启动非量化模型一致。 父主题: 推理模型量化
d_patch/models/falcon2/ 复制config.json文件至加载的权重文件/tokenizer目录下,参考路径上传代码和权重文件到工作环境中的步骤3。 cp -f config.json {work_dir}/tokenizers/falcon-11B/ glm4-9b模型
Files\OpenSSH-xx”(路径中包含ssh可执行exe文件)添加到环境系统变量中。 重新打开CMD,并执行ssh,结果如下图即说明安装成功,如果还未装成功则执行5和6。 OpenSSH默认端口为22端口,开启防火墙22端口号,在CMD执行以下命令: netsh advfirewall firewall
使用量化模型 使用量化模型需要在NPU的机器上运行。 启动vLLM前,请开启图模式(参考步骤六 启动推理服务中的配置环境变量),启动服务的命令和启动非量化模型一致。 父主题: 推理模型量化
使用量化模型 使用量化模型需要在NPU的机器上运行。 启动vLLM前,请开启图模式(参考步骤六 启动推理服务中的配置环境变量),启动服务的命令和启动非量化模型一致。 父主题: 推理模型量化
d_patch/models/falcon2/ 复制config.json文件至加载的权重文件/tokenizer目录下,参考路径上传代码和权重文件到工作环境中的步骤3。 cp -f config.json {work_dir}/tokenizers/falcon-11B/ glm4-9b模型