检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
后模型转换为HuggingFace格式的地址,还需要有Tokenizer原始文件。 --max-num-seqs:最大同时处理的请求数,超过后在等待池等候处理。 --max-model-len:推理时最大输入+最大输出tokens数量,输入超过该数量会直接返回。max-model-len的值必须小于config
用途 “obs://test-modelarts/pytorch/demo-code/” 用于存储训练脚本文件。 “obs://test-modelarts/pytorch/log/” 用于存储训练日志文件。 Step2 准备训练脚本并上传至OBS 准备本案例所需的训练脚本“pytorch-verification
推理精度测试 本章节介绍如何进行推理精度测试,请在Notebook的JupyterLab中另起一个Terminal,进行推理精度测试。 Step1 配置精度测试环境 获取精度测试代码。精度测试代码存放在代码包AscendCloud-LLM的llm_tools/llm_evalua
用途 “obs://test-modelarts/pytorch/demo-code/” 用于存储训练脚本文件。 “obs://test-modelarts/pytorch/log/” 用于存储训练日志文件。 Step2 准备训练脚本并上传至OBS 准备本案例所需的训练脚本“pytorch-verification
表示流水线并行中一个micro batch所处理的样本量。在流水线并行中,为了减少气泡时间,会将一个step的数据切分成多个micro batch。 该值与TP和PP以及模型大小相关,可根据实际情况进行调整。 GBS 512 表示训练中所有机器一个step所处理的样本量。影响每一次训练迭代的时长。
表示流水线并行中一个micro batch所处理的样本量。在流水线并行中,为了减少气泡时间,会将一个step的数据切分成多个micro batch。 该值与TP和PP以及模型大小相关,可根据实际情况进行调整。 GBS 512 表示训练中所有机器一个step所处理的样本量。影响每一次训练迭代的时长。
_CONVERTED_CKPT_PATH根据实际要求选择,示例如下。 输入数据集变量:是否使用已处理好数据集; 是,设置以下变量 USER_PROCESSED_DATA_DIR:已处理好数据路径目录 否,使用原始数据集,设置以下变量 ORIGINAL_TRAIN_DATA_PATH:训练时指定的输入原始数据集路径。
查看权重校验任务 当状态显示运行失败时,鼠标悬停在状态即可查看失败信息,根据失败信息处理问题。常见的权重校验失败信息及其处理建议请参见表4。 表4 权重校验常见的失败信息 失败信息 信息解释 处理建议 Unknown error, please contact the operation
表示流水线并行中一个micro batch所处理的样本量。在流水线并行中,为了减少气泡时间,会将一个step的数据切分成多个micro batch。 该值与TP和PP以及模型大小相关,可根据实际情况进行调整。 GBS 512 表示训练中所有机器一个step所处理的样本量。影响每一次训练迭代的时长。
以一个手写数字识别模型为例。 Model目录下必须要包含推理脚本文件customize_service.py,目的是为开发者提供模型预处理和后处理的逻辑。 图16 推理模型model目录示意图(需要用户自己准备模型文件) 推理脚本customize_service.py的具体写法要求可以参考模型推理代码编写说明。
2409-aarch64-snt9b-20241112192643-c45ac6b CANN:cann_8.0.rc3 Step1 创建ECS 下文中介绍如何在ECS中构建一个推理镜像,请参考ECS文档购买一个Linux弹性云服务器。完成网络配置、高级配置等步骤,可根据默认选择,或进行自定义。创
推理精度测试 本章节介绍如何进行推理精度测试,数据集是ceval_gen、mmlu_gen、math_gen、gsm8k_gen、humaneval_gen。 前提条件 确保容器可以访问公网。 Step1 配置精度测试环境 获取精度测试代码。精度测试代码存放在代码包AscendC
准备训练模型适用的容器镜像。 预训练 预训练 介绍如何进行预训练,包括训练数据处理、超参配置、训练任务、性能查看。 微调训练 SFT全参微调 介绍如何进行SFT全参微调、超参配置、训练任务、性能查看。 LoRA微调训练 介绍如何进行LoRA微调、超参配置、训练任务、性能查看。 父主题:
用途 “obs://test-modelarts/mpi/demo-code/” 用于存储MPI启动脚本与训练脚本文件。 “obs://test-modelarts/mpi/log/” 用于存储训练日志文件。 Step2 准备脚本文件并上传至OBS中 准备本案例所需的MPI启动脚本run_mpi
用途 “obs://test-modelarts/mpi/demo-code/” 用于存储MPI启动脚本与训练脚本文件。 “obs://test-modelarts/mpi/log/” 用于存储训练日志文件。 Step2 准备脚本文件并上传至OBS中 准备本案例所需的MPI启动脚本run_mpi
2409-aarch64-snt9b-20241112192643-c45ac6b CANN:cann_8.0.rc3 Step1 创建ECS 下文中介绍如何在ECS中构建一个推理镜像,请参考ECS文档购买一个Linux弹性云服务器。完成网络配置、高级配置等步骤,可根据默认选择,或进行自定义。创
后模型转换为HuggingFace格式的地址,还需要有Tokenizer原始文件。 --max-num-seqs:最大同时处理的请求数,超过后在等待池等候处理。 --max-model-len:推理时最大输入+最大输出tokens数量,输入超过该数量会直接返回。max-model-len的值必须小于config
推理精度测试 本章节介绍如何使用opencompass工具开展语言模型的推理精度测试,数据集是ceval_gen、mmlu_gen、math_gen、gsm8k_gen、humaneval_gen。 约束限制 确保容器可以访问公网。 当前的精度测试仅适用于语言模型精度验证,不适用
ath、model_name_or_path根据实际要求选择,示例如下。 输入数据集参数:是否使用已处理好数据集; 是,设置以下超参 processed_data_dir:已处理好数据路径目录 否,使用原始数据集,设置以下超参 dataset:训练时指定的输入原始数据集路径。 输
优雅退出容器可能会导致在滚动升级的过程中业务概率中断。要保证容器优雅退出,从收到SIGTERM信号开始,业务需要将收到的请求全部处理完毕再结束,这个处理时长最多不超过90秒。例如run.sh如下所示: #!/bin/bash gunicorn_pid="" handle_sigterm()