检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
数据工程常见报错与解决方案 数据工程常见报错及解决方案请详见表1。 表1 数据工程常见报错与解决方案 功能模块 常见报错 解决方案 数据获取 File format mismatch, require [{0}]. 请检查创建数据集时使用的数据,与平台要求的文件内容格式是否一致。
NLP大模型训练常见报错与解决方案 NLP大模型训练常见报错及解决方案请详见表1。 表1 NLP大模型训练常见报错与解决方案 常见报错 问题现象 原因分析 解决方案 创建训练任务时,数据集列表为空 创建训练任务时,数据集选择框中显示为空,无可用的训练数据集。 数据集未发布。 请提
科学计算大模型训练常见报错与解决方案 科学计算大模型训练常见报错及解决方案请详见表1。 表1 科学计算大模型训练常见报错与解决方案 常见报错 问题现象 原因分析 解决方案 创建训练任务时,数据集列表为空 创建训练任务时,数据集选择框中显示为空,无可用的训练数据集。 数据集未发布。
审计 云审计服务(Cloud Trace Service,CTS)是华为云安全解决方案中专业的日志审计服务,提供对各种云资源操作记录的收集、存储和查询功能,可用于支撑安全分析、合规审计、资源跟踪和问题定位等常见应用场景。 用户开通云审计服务并创建、配置追踪器后,CTS可记录用户使用盘古的管理事件和数据事件用于审计。
优化其性能。 根据每个客户的实际对话知识,如帮助文档、案例库和FAQ库等,可以使用“先搜后推”的解决方案。客户的文档库可以实时更新,大模型的应答可以无缝实时更新。(搜索+大模型解决方案) 父主题: 大模型概念类问题
使用数据工程准备与处理数据集 数据工程介绍 数据工程使用流程 数据集格式要求 导入数据至盘古平台 加工数据集 标注数据集 评估数据集 发布数据集 数据工程常见报错与解决方案
创建科学计算大模型训练任务 查看科学计算大模型训练状态与指标 发布训练后的科学计算大模型 管理科学计算大模型训练任务 科学计算大模型训练常见报错与解决方案 父主题: 开发盘古科学计算大模型
创建NLP大模型训练任务 查看NLP大模型训练状态与指标 发布训练后的NLP大模型 管理NLP大模型训练任务 NLP大模型训练常见报错与解决方案 父主题: 开发盘古NLP大模型
进行优化,确保其质量和一致性。同时,数据工程工具链还提供强大的数据存储和管理能力,为大模型训练提供高质量的数据支撑。 模型开发工具链 模型开发工具链是盘古大模型服务的核心组件,提供从模型创建到部署的一站式解决方案。 该工具链具备模型训练、部署、推理等功能,通过高效的推理性能和跨平
评估模型效果。以下列出该场景中可能遇到的常见问题,评测过程中如出现这些问题,可参考相应的解决方案: 问题一:问答场景问题,针对文档库中的内容可以回答的问题,模型的最终回答不符合预期。 解决方案:首先进行问题定位,确定是未检索到相关文档,还是检索到相关内容但模型理解错误。如果未检索
与其他服务的关系 与对象存储服务的关系 盘古大模型使用对象存储服务(Object Storage Service,简称OBS)存储数据和模型,实现安全、高可靠和低成本的存储需求。 与ModelArts服务的关系 盘古大模型使用ModelArts服务进行算法训练部署,帮助用户快速创建和部署模型。
单击训练任务名称,可以在“日志”页面查看训练过程中产生的日志。对于训练异常或失败的任务也可以通过训练日志定位训练失败的原因。典型训练报错和解决方案请参见NLP大模型训练常见报错与解决方案。 训练日志可以按照不同的节点(训练阶段)进行筛选查看。分布式训练时,任务被分配到多个工作节点上进行并行处理,每个工
链还提供强大的数据存储和管理能力,为大模型训练提供高质量的数据支撑。 支持区域: 西南-贵阳一 使用数据工程准备与处理数据集 检测数据集质量 清洗数据集 发布数据集 模型开发工具链 模型开发工具链是盘古大模型服务的核心组件,提供从模型创建到部署的一站式解决方案。 该工具链具备模型
的xxx文档”。 例如,“结合金融领域相关知识,生成一份调研报告大纲,报告主题是区块链洞察”、“以上是某理财app用户反馈的问题,请提供解决方案。” 人设: 增加人设可以让生成的内容更符合该领域需求。 例如,“假设你是一位银行面试官,请生成10个银行面试问题。”、“假如你是一个高
单击训练任务名称,可以在“日志”页面查看训练过程中产生的日志。对于训练异常或失败的任务也可以通过训练日志定位训练失败的原因。典型训练报错和解决方案请参见科学计算大模型训练常见报错与解决方案。 训练日志可以按照不同的节点(训练阶段)进行筛选查看。分布式训练时,任务被分配到多个工作节点上进行并行处理,每个工
总的来说,数据标注是数据工程中不可或缺的一环,通过高效、准确的标注过程,ModelArts Studio大模型开发平台为用户提供了灵活、定制化的解决方案,确保数据质量,助力后续模型训练和优化,推动AI技术的成功应用。 支持数据标注的数据集类型 ModelArts Studio大模型开发平台支持标注操作的数据集类型如下:
清洗、标注、评估、发布等环节,成为数据开发中不可或缺的重要步骤。 在ModelArts Studio开发平台中,数据工程功能提供了完整的解决方案,用于高效构建和管理数据集,其操作流程见图1、表1。这种全面的数据准备机制,确保了数据质量的可靠性,为各类模型开发奠定了坚实的基础。 图1
部署推理服务后,可以采用人工评测的方案来评估模型效果。若评测过程中出现如下问题,可以参考解决方案进行优化: 问题一:模型答案没有按照Prompt要求回答。例如,要求文案在300字以内,但是模型回答字数仍然超出300字。 解决方案:在数据质量要求中提到要求训练数据的输出(target字段)需要符合业
的应用提供智能支持,提升模型在实际场景中的推理性能。 SDK文档 盘古推理SDK简介 使用推理SDK 常见问题 了解更多常见问题、案例和解决方案 热门案例 如何对盘古大模型的安全性展开评估和防护? 训练智能客服系统大模型需考虑哪些方面? 如何调整训练参数,使盘古大模型效果最优? 如何判断盘古大模型训练状态是否正常?
效收集并处理各种格式的数据,满足不同训练任务的需求,并提供强大的数据存储和管理能力,为大模型训练提供坚实的数据支持。 模型开发工具链:模型开发工具链是盘古大模型服务的核心组件,提供从模型创建到部署的一站式解决方案,涵盖模型训练、部署、推理等功能。通过高效推理性能和跨平台迁移工具,保障模型在不同环境中的稳定、高效应用。