检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
使用API调用科学计算大模型 使用API调用科学计算大模型步骤如下: 登录ModelArts Studio大模型开发平台,进入所需空间。 单击左侧“模型开发 > 模型部署”。 若调用已部署的模型,单击状态为“运行中”的模型名称,在“详情”页签,可获取API的URL。 图1 获取已部署模型的调用路径
与对象存储服务的关系 盘古大模型使用对象存储服务(Object Storage Service,简称OBS)存储数据和模型,实现安全、高可靠和低成本的存储需求。 与ModelArts服务的关系 盘古大模型使用ModelArts服务进行算法训练部署,帮助用户快速创建和部署模型。 与云搜索服务的关系
登录ModelArts Studio大模型开发平台,进入所需操作空间。 图1 进入操作空间 单击左侧“模型开发 > 模型部署”。 调用已部署的模型。单击状态为“运行中”的模型名称,在“详情”页签,可获取API的URL。 图2 获取已部署模型的调用路径 调用预置服务。在“预置服务”
统计模型调用信息 针对调用的大模型,平台提供了统一的管理功能。 登录ModelArts Studio大模型开发平台,进入所需操作空间。 图1 进入操作空间 单击左侧导航栏“调用统计”,选择“NLP”页签。 选择当前调用的NLP大模型,可以按照不同时间跨度查看当前模型的调用总数、调
管理NLP大模型部署任务 模型更新、修改部署 成功创建部署任务后,如需修改已部署的模型或配置信息,可以在详情页面单击右上角的“模型更新”或“修改部署”进行调整。更新模型时可以替换模型,但在修改部署时模型不可替换。 在“模型更新”或“修改部署”后进行升级操作时,可选择全量升级或滚动升级两种方式:
查看NLP大模型部署任务详情 部署任务创建成功后,可以在“模型开发 > 模型部署”页面查看模型的部署状态。 当状态依次显示为“初始化 > 部署中 > 运行中”时,表示模型已成功部署,可以进行调用。 此过程可能需要较长时间,请耐心等待。在此过程中,可单击模型名称可进入详情页,查看模
进入操作空间 在左侧导航栏中选择“模型开发 > 模型压缩”,单击界面右上角“创建压缩任务”。参考表1创建模型压缩任务。 表1 模型压缩任务参数说明 参数类别 参数名称 说明 压缩配置 压缩模型 选择需要进行压缩的模型,可使用来自资产的模型或任务的模型。 压缩策略 例如,可使用INT
开发盘古科学计算大模型 使用数据工程构建科学计算大模型数据集 训练科学计算大模型 部署科学计算大模型 调用科学计算大模型
气象/降水模型 创建推理作业 查询推理作业详情 父主题: 科学计算大模型
据的准确性、完整性和一致性,确保数据在进入模型训练前的高质量标准。 数据发布:平台支持将处理后的数据集发布为多种格式,包括默认格式和盘古格式。尤其对于文本类和图片类数据集,平台支持将其转换为专门用于训练盘古大模型的盘古格式,为后续模型训练提供高效的数据支持。 通过整合上述功能,数
创建科学计算大模型中海洋类模型的推理作业。 URI POST /tasks 科学计算大模型的API请求地址可以直接在ModelArts Studio大模型开发平台获取: 登录ModelArts Studio大模型开发平台,进入所需空间。 获取调用路径及部署ID。单击左侧“模型开发 >
考察模型逻辑 虽然模型的思考过程是个黑盒,但可以通过反问模型答案生成的逻辑或提问模型是否理解任务要求,考察模型生成的逻辑,提升模型思维过程的可解释性。 对于模型答案的反问 如果模型给出了错误的答案,可以反问模型回答的逻辑,有时可以发现错误回答的根因,并基于此修正提示词。 在反问时
ModelArts Studio大模型开发平台预置多种数据处理AI算子,多种标注工具,满足用户多任务多场景需求,提高开发/标注效率>10X。 0代码,模型开发“简” ModelArts Studio大模型开发平台预置盘古系列预训练大模型,支持快速开发,全程0代码开发,极大降低大模型开发门槛。 功能强,Agent开发“好”
NLP大模型 文本对话 父主题: API
创建科学计算大模型中气象/降水模型的推理作业。 URI POST /tasks 科学计算大模型的API请求地址可以直接在ModelArts Studio大模型开发平台获取: 登录ModelArts Studio大模型开发平台,进入所需空间。 获取调用路径及部署ID。单击左侧“模型开发 >
调用NLP大模型 使用“能力调测”调用NLP大模型 使用API调用NLP大模型 统计模型调用信息 父主题: 开发盘古NLP大模型
部署NLP大模型 创建NLP大模型部署任务 查看NLP大模型部署任务详情 管理NLP大模型部署任务 父主题: 开发盘古NLP大模型
取指定数量的数据用于训练。进行数据配比的目的是为了确保模型能够更全面地学习和理解数据的多样性,提升模型的泛化能力和性能。 图4 发布方式2 图5 数据集配比 设置发布格式。由于数据工程需要支持对接盘古大模型或三方大模型,为了使这些数据集能够被这些大模型正常训练,平台支持发布不同格式的数据集。
数据标注的意义主要体现在以下几个方面: 提升训练数据的质量:通过高质量的标注,用户能够获得准确、可靠的标签数据,为后续模型训练提供更有价值的输入数据,提升训练模型的准确性和表现。 满足不同业务需求:ModelArts Studio大模型开发平台支持不同类型的数据标注,包括文本、图
API凭证”页面,获取user name、domain name、project id。 由于盘古大模型当前部署在“西南-贵阳一”区域,需要获取与“西南-贵阳一”区域对应的project id。 图1 获取user name、domain name、project id 打开Pos