检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
选择基模型/基础功能模型 盘古-NLP-N2-基础功能模型 准备训练数据 本场景不涉及自监督训练,无需准备自监督数据。 微调数据来源: 来源一:真实业务场景数据。 来源二:基于大模型的数据泛化。基于目标场任务的分析,通过人工标注部分数据样例,然后利用大模型(如盘古提供的任意规格的基础功能模型)采
数据质量:若数据格式没有问题,仍然发现模型效果不好,您可以根据具体问题针对性的提升您的数据质量。比如,随着对话轮数的增加,模型出现了遗忘,可以检查构造的训练数据中轮数是否普遍较少,建议根据实际情况增加数据中的对话轮数。 父主题: 大模型微调训练类
一致,质量较差的测试集无法反映模型的真实结果。 数据质量:请检查训练数据的质量,若训练样本和目标任务不一致或者分布差异较大,则会加剧该现象。此外,若可预见实际场景会不断发生变化,建议您定期更新训练数据,对模型进行微调更新。 父主题: 大模型微调训练类
判断数据中的JSON参数是否与Query中的参数对应上。 训练模型 自监督训练: 不涉及 有监督微调: 该场景采用了下表中的微调参数进行微调,您可以在平台中参考如下参数进行训练: 表1 微调核心参数设置 训练参数 设置值 数据批量大小(batch_size) 8 训练轮数(epoch) 6 学习率(learning_rate)
数据量和质量均满足要求,为什么盘古大模型微调效果不好 这种情况可能是由于以下原因导致的,建议您排查: 训练参数设置:您可以通过绘制Loss曲线查询来确认模型的训练过程是否出现了问题,这种情况大概率是由于训练参数设置的不合理而导致了欠拟合或过拟合。请检查训练参数中的 “训练轮次”或“学习率”等参
评估模型效果 训练作业完成后,可以通过平台提供的评估指标评估模型的效果,查看模型指标步骤如下: 使用最终租户登录ModelArts Studio平台,在“我的空间”模块,单击进入所需空间。 在左侧导航栏中选择“模型开发 > 模型训练”。 单击训练完成的模型,可在“训练结果”页面查
如何对盘古大模型的安全性展开评估和防护 盘古大模型的安全性主要从以下方面考虑: 数据安全和隐私保护:大模型涉及大量训练数据,这些数据是重要资产。为确保数据安全,需在数据和模型训练的全生命周期内,包括数据提取、加工、传输、训练、推理和删除的各个环节,提供防篡改、数据隐私保护、加密、
如何查看预置模型的历史版本 ModelArts Studio平台支持查看预置模型的多个历史版本,并提供对历史版本进行训练等操作的功能。您还可以查看每个版本的操作记录、状态以及其他基础信息。 要查看预置模型的历史版本,您可以按照以下步骤操作: 进入平台的“空间资产 > 模型 > 预置”页面。
高频常见问题 大模型概念类问题 如何对盘古大模型的安全性展开评估和防护 训练智能客服系统大模型需考虑哪些方面 大模型微调训练类问题 如何调整训练参数,使盘古大模型效果最优 如何判断盘古大模型训练状态是否正常 为什么微调后的盘古大模型评估结果很好,但实际场景表现很差 数据量足够,为什么盘古大模型微调效果仍然不好
模型开发 ModelArts Studio大模型开发平台提供了模型开发功能,涵盖了从模型训练到模型调用的各个环节。平台支持全流程的模型生命周期管理,确保从数据准备到模型部署的每一个环节都能高效、精确地执行,为实际应用提供强大的智能支持。 模型训练:在模型开发的第一步,ModelArts
为什么其他大模型适用的提示词在盘古大模型上效果不佳 提示词与训练数据的相似度关系。 提示词的效果通常与训练数据的相似度密切相关。当提示词的内容与模型在训练过程中接触过的样本数据相似时,模型更容易理解提示词并生成相关的输出。这是因为模型通过学习大量的训练数据,逐渐建立起对特定模式、
训练数据的优化是提升模型效果的基础。通过数据加工、去噪以及数据增强等手段,可以提高训练数据的质量和多样性,从而增强模型针对于训练场景的效果和模型的泛化能力。 在准备好训练数据之后,可以通过调整训练超参数来提升模型收敛速度和最终性能,例如调整学习率、批量大小、学习率衰减比率等等。
在选择和使用盘古大模型时,了解不同模型所支持的操作行为至关重要。不同模型在预训练、微调、模型评测、在线推理和能力调测等方面的支持程度各不相同,开发者应根据自身需求选择合适的模型。以下是盘古NLP大模型支持的具体操作: 表2 盘古NLP大模型支持的能力 模型 预训练 微调 模型评测 模型压缩 在线推理
导出模型 导入其他局点盘古大模型 导入盘古大模型前,请确保当前空间为该用户所创建的空间。 导入模型功能可以将其他局点训练的模型导入本局点进行使用。 导入模型前,请参考导出盘古大模型至其他局点完成模型导出操作。 登录ModelArts Studio大模型开发平台,在“空间资产 > 模型”页面,单击右上角的“导入模型”。
训练NLP大模型所需数据量 使用数据工程构建盘古NLP大模型数据集进行模型训练时,所需数据量见表2。 表2 构建NLP大模型所需数据量 模型规格 训练类型 推荐数据量 最小数据量(数据条数) 单场景推荐训练数据量 单条数据Token长度限制 N1 微调 - 1000条/每场景 ≥ 1万条/每场景
Studio大模型开发平台,在“我的空间”模块,单击进入所需空间。 获取调用路径。 在左侧导航栏中选择“模型开发 > 模型部署”。 获取已部署模型的调用路径。在“我的服务”页签,单击状态为“运行中”的模型名称,在“详情”页签,可获取模型调用路径,如图1。 图1 获取已部署模型的调用路径
创建NLP大模型评测任务 创建NLP大模型评测任务前,请确保已完成创建NLP大模型评测数据集操作。 预训练的NLP大模型不支持评测。 创建NLP大模型自动评测任务 创建NLP大模型自动评测任务步骤如下: 登录ModelArts Studio大模型开发平台,在“我的空间”模块,单击进入所需空间。
使用“能力调测”调用NLP大模型 能力调测功能支持用户调用预置或训练后的NLP大模型。使用该功能前,请完成模型的部署操作,步骤详见创建NLP大模型部署任务。 使用“能力调测”调用NLP大模型可实现文本对话能力,即在输入框中输入问题,模型将基于问题输出相应的回答,具体步骤如下: 登录ModelArts
数据预处理优化 模型训练前,需要对数据进行加工,防止某些特征存在极端异常值或大面积错误数据,导致模型训练不稳定。可能会引发如下问题: 模型对异常值过度敏感,导致拟合异常值而非整体数据分布。 训练过程中损失波动较大,甚至出现梯度爆炸。 模型在测试集上表现不佳,泛化能力差。 优化调整策略如下:
模型调优方法介绍 调优目标:提升模型精度和性能。 调优思路:模型调优总体可分为两方面,数据预处理和模型训练参数优化,优化思路是从最简单的情形出发,逐步迭代调整提升模型效果,通过实验发现和确认合适的数据量,以及最佳的模型结构和模型参数。 父主题: 盘古科学计算大模型调优实践