检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
数据量和质量均满足要求,Loss也正常收敛,为什么微调后的效果不好 这种情况可能是由于以下几个原因导致的,建议您依次排查: Prompt设置:请检查您使用的Prompt,对于同一个目标任务,建议在推理阶段使用和训练数据相同或相似的PROMPT,才能发挥出模型的最佳效果。 模型规格
安全 责任共担 身份认证与访问控制 数据保护技术 审计 监控安全风险
评估盘古大模型 创建模型评估数据集 创建模型评估任务 查看评估任务详情
批量评估提示词效果 创建提示词评估数据集 创建提示词评估任务 查看提示词评估结果 父主题: 提示词工程
盘古大模型套件在订购时分为模型资产和模型推理资产。 模型资产即盘古系列大模型,用户可以订购盘古基模型、功能模型、专业大模型。 基模型:基模型经过大规模数据的预训练,能够学习并理解多种复杂特征和模式。这些模型可作为各种任务的基础,包括但不限于阅读理解、文本生成和情感分析等,但不具备对话问答能力。
限制。 每个模型请求的最大Token数有所差异,详细请参见模型的基础信息。 模型所支持的训练数据量、数据格式要求请参见《用户指南》“准备盘古大模型训练数据集 > 模型训练所需数据量与数据格式要求”。
Cache Cache缓存是一种临时存储数据的方法,它可以把常用的数据保存在内存或者其他设备中,这样当需要访问这些数据时,就不用再去原始的数据源查找,而是直接从缓存中获取,从而节省时间和资源。 对LLM使用缓存: LLM llm = LLMs.of(LLMs.PANGU, llmConfig);
import LLMs from pangukitsappdev.skill.doc.summary import DocSummaryMapReduceSkill # 加载原始内容, 需根据文件源自行实现读取步骤 # 以word文件为例,需安装docx库 doc = docx.Document(r'报告
Caches.of("inMemory") # 更新数据 cache.update("1+1", LLMResp(answer=2)) 查询数据:从缓存中获取数据,需要指定数据的键值对。例如,查找1+1这个问题对应的答案,参考示例如下: # 查找数据 cache_value = cache.lookup("1+1")
用户认证信息就是创建集群时设置的用户/密码。 华为云CSS(集成Embedding) 否 集群host信息。 用户认证信息。 云搜索服务CSS: https://support.huaweicloud.com/css/index.html 参考CSS服务“快速入门”章节创建机器后,在集群信息中获取hosts信息。
若任务较复杂,那么可能就需要更多的训练轮数。 数据量级:如果微调数据很多,从客观上来说越多的数据越能接近真实分布,那么可以使用较大的学习率和较大的批量大小,以提高训练效率。如果微调数据量相对较少,则可以使用较小的学习率和较小的数据批量大小,避免过拟合。 通用模型的规格:如果模型
了其他语言、异常符号、乱码等字符。这种情况可能是由于以下几个原因导致的,建议您依次排查: 数据质量:请检查训练数据中是否存在包含异常字符的数据,可以通过规则进行清洗。 训练参数设置:若数据质量存在问题,且因训练参数设置的不合理而导致过拟合,该现象会更加明显。请检查训练参数中的 “
ask("写一篇五言律诗").answer 支持调整的参数解释: max_tokens: Optional[int] # 完成时要生成的令牌的最大数量 temperature: Optional[float] # 调整随机抽样的程度,温度值越高,随机性越大; 范围见模型API规范
"target": "是的,我试了 还是不行"} 数据质量:若数据格式没有问题,仍然发现模型效果不好,您可以根据具体问题针对性的提升您的数据质量。比如,随着对话轮数的增加,模型出现了遗忘,可以检查构造的训练数据中轮数是否普遍较少,建议根据实际情况增加数据中的对话轮数。 父主题: 典型训练问题和优化策略
明、表5。 在数据配置中,选择训练数据集、验证数据等参数。 验证数据可选择“从训练数据拆分”和“从已有数据导入”。 从训练数据拆分:取值范围[1%-50%]。设置1%即从训练数据中随机拆分出1%的数据作为验证集,验证集中最多使用100条数据用于模型训练效果评估。数据按比例拆分后,
默认值 范围 说明 数据批量大小 8 >=1 数据集进行分批读取训练,设定每个批次数据的大小。 一般来说,批大小越大,训练速度越快,但会占用更多的内存资源,且可能导致收敛困难或过拟合。批大小越小,训练速度越慢,但会减少内存消耗,且可能提高泛化能力。因此,批大小需要根据数据集的规模和特点
海量训练数据 盘古大模型依托海量且多样化的训练数据,涵盖从日常对话到专业领域的广泛内容,帮助模型更好地理解和生成自然语言文本,适用于多个领域的业务应用。这些数据不仅丰富多样,还为模型提供了深度和广度的语言学习基础,使其能够生成更加自然、准确且符合语境的文本。 通过对海量数据的深入学
VectorStoreConfig, ServerInfoCss from pangukitsappdev.skill.doc.ask import DocAskMapReduceSkill vector_store_config = VectorStoreConfig(store_name="css",
import time from pangukitsappdev.skill.doc.summary import DocSummaryMapReduceSkill from pangukitsappdev.api.llms.factory import LLMs # 设置SDK使用的配置文件
订购盘古边缘部署服务 登录盘古大模型套件平台,在服务“总览”页面,单击“立即购买”,平台将为您提交购买权限申请。如您有加急购买需求,可在页面右上角单击“工单 > 新建工单”,搜索“盘古大模型”产品,选择问题类型并提交工单。 图1 立即购买 图2 新建工单 获取购买权限后,根据需要选择计费模式,基模型需选择“N2