检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
执行如下脚本进行权重转换生成量化系数,详细参数解释请参见https://github.com/NVIDIA/TensorRT-LLM/tree/main/examples/llama#int8-kv-cache) python convert_checkpoint.py \ --model_dir
执行权重转换。
执行权重转换。
执行如下脚本进行权重转换生成量化系数,详细参数解释请参见https://github.com/NVIDIA/TensorRT-LLM/tree/main/examples/llama#int8-kv-cache) python convert_checkpoint.py \ --model_dir
执行如下脚本进行权重转换生成量化系数,详细参数解释请参见https://github.com/NVIDIA/TensorRT-LLM/tree/main/examples/llama#int8-kv-cache) python convert_checkpoint.py \ --model_dir
执行权重转换。
图4 修改ChatGLMv4-9B tokenizer文件 图5 修改ChatGLMv4-9B tokenizer文件 Qwen系列 在进行HuggingFace权重转换Megatron前,针对Qwen系列模型(qwen-7b、qwen-14b、qwen-72b)中的tokenizer
图4 修改ChatGLMv4-9B tokenizer文件 图5 修改ChatGLMv4-9B tokenizer文件 Qwen系列 在进行HuggingFace权重转换Megatron前,针对Qwen系列模型(qwen-7b、qwen-14b、qwen-72b)中的tokenizer
图4 修改ChatGLMv4-9B tokenizer文件 图5 修改ChatGLMv4-9B tokenizer文件 Qwen系列 在进行HuggingFace权重转换Megatron前,针对Qwen系列模型(qwen-7b、qwen-14b、qwen-72b)中的tokenizer
执行convert_checkpoint.py脚本进行权重转换生成量化系数,详细参数解释请参见https://github.com/NVIDIA/TensorRT-LLM/tree/main/examples/llama#int8-kv-cache。
执行权重转换。
执行如下脚本进行权重转换生成量化系数,详细参数解释请参见https://github.com/NVIDIA/TensorRT-LLM/tree/main/examples/llama#int8-kv-cache) python convert_checkpoint.py \ --model_dir
执行权重转换。
训练脚本中会自动执行训练前的权重转换操作和数据处理操作。 图1 选择镜像 训练作业启动命令中输入: cd /home/ma-user/work/llm_train/AscendSpeed; sh ./scripts/install.sh; sh .
如果使用了量化功能,则使用推理模型量化章节转换后的权重。如果使用的是训练后模型转换为HuggingFace格式的地址,还需要有Tokenizer原始文件。 --max-num-seqs:最大同时处理的请求数,超过后在等待池等候处理。
以下服务启动介绍的是在线推理方式,离线推理请参见https://docs.vllm.ai/en/latest/getting_started/quickstart.html#offline-batched-inference。
详细工具的使用指导请参考离线预检和在线预检介绍。 父主题: msprobe工具使用指导
使用子账号用户登录ModelArts控制台,选择“模型部署 > 在线服务”,单击“部署”,在部署服务页面,资源池规格只能选择专属资源池。 父主题: 典型场景配置实践
执行convert_checkpoint.py脚本进行权重转换生成量化系数,详细参数解释请参见https://github.com/NVIDIA/TensorRT-LLM/tree/main/examples/llama#int8-kv-cache。
执行convert_checkpoint.py脚本进行权重转换生成量化系数,详细参数解释请参见https://github.com/NVIDIA/TensorRT-LLM/tree/main/examples/llama#int8-kv-cache。